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A Hamilton-Jacobi-Bellman equations

Define the optimal value function

V (a0, e0) = max
{ct}∞t=0

U0 s.t. (4), (5),

in which the general equilibrium factor rewards r and w are taken as parametric. Fol-

lowing the principle of optimality, the household’s problem can be characterized by the

Hamilton-Jacobi-Bellman equation

ρV (a, e) = max
c∈R+

{
u(c) +

1

dt
EtdV (a, e)

}
,

for any t ∈ [0,∞). Applying Itô’s Lemma, or the change of variable formula (see Sen-

newald and Wälde, 2006), the continuation value is given by

dV (a, e) = Va (a, e) da+ (V (a, el)− V (a, eh))dq1 + (V (a, eh)− V (a, el))dq2,

where Va (a, e) denotes the partial derivative of the value function with respect to wealth.

Using (4) together with the martingale difference properties of the stochastic integrals

under Poisson uncertainty we have that for s ≤ t

Es

[ ˆ t

s

(V (a, el)− V (a, eh))dq1 −
ˆ t

s

(V (a, el)− V (a, eh))ϕ1(e)dt
]

= 0,

Es

[ ˆ t

s

(V (a, eh)− V (a, el))dq2 −
ˆ t

s

(V (a, eh)− V (a, el))ϕ2(e)dt
]

= 0.

Then, the Hamilton-Jacobi-Bellman equation can be written as

ρV (a, e) = max
c∈R+

{
u(c) + Va(a, e)(ra+ we− c)

+ (V (a, el)− V (a, eh))ϕ1(e) + (V (a, eh)− V (a, el))ϕ2(e)
}
.

The first-order condition for an interior solution reads

u′(c) = Va(a, e),

for any t ∈ [0,∞), making optimal consumption c = c(a, e) a function only of the state

variables and independent of calendar time, t.

Due to the state dependence of the arrival rates in the endowments of efficiency units,

only one Poisson process will be active for each of the values of the discrete state variable,

e ∈ E . Using the first order condition we arrive to the bivariate system of maximized
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HJB equations in Equations (9) and (10)

ρV (a, eh) = u(c(a, eh)) + Va(a, eh)(ra+ weh − c(a, eh)) + (V (a, el)− V (a, eh))ϕhl,

ρV (a, el) = u(c(a, el)) + Va(a, el)(ra+ wel − c(a, el)) + (V (a, eh)− V (a, el))ϕlh.
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B Fokker-Planck equations

Assume there exists a function f whose arguments are the stochastic processes a and e,

and define the household’s optimal savings function as ȧ ≡ s (a, e) = ra + we − c (a, e).

Using the change of variable formula, the evolution of f is given by

df (a, e) = fa (a, e) s (a, e) dt+ (f (a, el)− f (a, eh)) dq1 + (f (a, eh)− f (a, el)) dq2.

Due to the state dependence of the arrival rates only one Poisson process will be

active. Applying the expectations operator conditional on the information available at

instant t and dividing by dt we obtain the infinitesimal generator of f (a, e), denoted by

Af (a, e) ≡ Etdf (a, e) /dt, and given by

Etdf (a, e)

dt
= fa (a, e) s (a, e)+ (f (a, el)− f (a, eh))ϕhl +(f (a, eh)− f (a, el))ϕlh. (B.1)

By means of Dynkin’s formula, the expected value of the function f (·) at a point in

time t is given by the expected value of the function at instant s < t plus the sum of the

expected future changes up to t

Ef (at, et) = Ef (as, es) +

tˆ

s

E (Af (aτ , eτ )) dτ. (B.2)

Differentiating (B.2) with respect to time yields

∂

∂t
Ef (at, et) =

∂

∂t

Ef (as, es) +

tˆ

s

E (Af (aτ , eτ )) dτ


=

∂

∂t

Ef (as, es) +

tˆ

s

Edf (aτ , eτ )


= E (Af (a, e))

=
∑

e∈{eh,el}

∞̂

a

Af (a, e) g (a, e, t) da,

that is

∂

∂t
Ef (a, e) =

∞̂

−∞

Af (a, eh) g (a, eh, t) da︸ ︷︷ ︸
ωeh

+

∞̂

−∞

Af (a, el) g (a, el, t) da︸ ︷︷ ︸
ωel

, (B.3)

where g (a, e, t) is the joint density function of wealth and endowment of efficiency units
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at instant t. For illustration consider the case of e = eh, i.e., ωeh . Using the definition of

the infinitesimal operator together with (B.1) we note that

Af (a, eh) = fa (a, eh) s (a, eh) + (f (a, el)− f (a, eh))ϕhl.

Hence,

ωeh =

∞̂

a

[
fa (a, eh) s (a, eh) + (f (a, el)− f (a, eh))ϕhl

]
g (a, eh, t) da

=

∞̂

a

fa (a, eh) s (a, eh) g (a, eh, t) da+

∞̂

a

(f (a, el)− f (a, eh))ϕhlg (a, eh, t) da.

Using integration by part for the term associated with fa

∞̂

a

fa (a, eh) s (a, eh) g (a, eh, t) da = −
∞̂

a

f (a, eh)
∂

∂a
[s (a, eh) g (a, eh, t)] da,

where

∂

∂a
[s (a, eh) g (a, eh, t)] =

(
r − ∂

∂a
c (a, eh)

)
g (a, eh, t) + s (a, eh)

∂

∂a
g (a, eh, t) .

It follows that

ωeh =

∞̂

a

f (a, eh)

[
−

(
r − ∂

∂a
c (a, eh)

)
g (a, eh, t)− s (a, eh)

∂

∂a
g (a, eh, t)

]
da

+

∞̂

a

[
(f (a, el)− f (a, eh))ϕhl

]
g (a, eh, t) da,

and

ωel =

∞̂

a

f (a, el)

[
−

(
r − ∂

∂a
c (a, el)

)
g (a, el, t)− s (a, el)

∂

∂a
g (a, e2, t)

]
da

+

∞̂

a

[
(f (a, eh)− f (a, el))ϕlh

]
g (a, el, t) da.
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Note that the expected value of f can be written as

Ef (a, e) =

∞̂

a

f (a, eh) g (a, eh, t) da+

∞̂

a

f (a, el) g (a, el, t) da

and therefore

∂

∂t
Ef (a, e) =

∞̂

a

f (a, eh)
∂

∂t
g (a, eh, t) da+

∞̂

a

f (a, el)
∂

∂t
g (a, el, t) da. (B.4)

Finally we equate (B.3) and (B.4) and collect terms to obtain

∞̂

a

f (a, eh)φehda+

∞̂

a

f (a, el)φelda = 0, (B.5)

where

φeh = −
(
r − ∂

∂a
c (a, eh) + ϕhl

)
g (a, eh, t)

− s (a, eh)
∂

∂a
g (a, eh, t) + ϕlhg (a, el, t)−

∂

∂t
g (a, eh, t) ,

and

φel = −
(
r − ∂

∂a
c (a, el) + ϕlh

)
g (a, el, t)

− s (a, el)
∂

∂a
g (a, el, t) + ϕhlg (a, eh, t)−

∂

∂t
g (a, el, t) .

The Fokker-Planck equations that define these subdensities are obtained by setting

φel = φeh = 0 since that is that only way the integral equation (B.5) can be satisfied

for all possible functions f . A formal proof can be found in Bayer and Wälde (2010a,b).

This results in a system of two non-autonomous quasi-linear partial differential equations

in two unknowns g (a, eh, t), g (a, el, t)

∂

∂t
g (a, eh, t) + s (a, eh)

∂

∂a
g (a, eh, t) =

−
(
r − ∂

∂a
c (a, eh) + ϕhl

)
g (a, eh, t) + ϕlhg (a, el, t) , (B.6)
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∂

∂t
g (a, el, t) + s (a, el)

∂

∂a
g (a, el, t) =

−
(
r − ∂

∂a
c (a, el) + ϕlh

)
g (a, el, t) + ϕhlg (a, eh, t) . (B.7)

The stationary subdensities result when the time derivatives ∂g (a, e, t) /∂t are zero

for all e ∈ E , which transforms the previous system of equations into one of ordinary

differential equations as described by (15) and (16).

Given the stationary subdensity function, the stationary probability ”subdistribu-

tions” can be computed as

G (a, e) =

aˆ

a

g (x, e) dx, (B.8)

where G (a, e) denotes the probability that an individual with endowment of efficiency

equal to e ∈ E has a wealth level of at most a. When a → ∞, (12) implies that

lima→∞ G (a, e) = p (e). Similar to (13), the (unconditional) stationary probability dis-

tribution of wealth can be computed as

G (a) = G (a, eh) +G (a, el) , (B.9)

which can be then used to compute the Gini coefficient in the economy

G =
1

µ

∞̂

a

G (a) (1−G (a)) da, (B.10)

where µ = E (a) denotes the unconditional mean of wealth.
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C Transition probabilities and the limiting distribu-

tion of income

Section C.1 of this appendix shows how to compute the transition probabilities at a given

point in time across states using the arrival rates for the idiosyncratic income process.

Section C.2 uses the two state income process of Section 2 to illustrate how to compute

the limiting (stationary) probability distribution for the endowment of efficiency units

defined in (14) from the arrival rates of the stochastic process defined by (5). A more

detailed description can be found in Ross (2009).

C.1 Transition probabilities

In what follows, assume that the endowment of efficiency units (income) can take d dif-

ferent values. Let p (ei, ej, t) ≡ P (et+s = ej | es = ei) for all s ≤ t denotes the probability

that the income process currently in state i will transit to state j at an instant later for all

i, j = 1, . . . , d. Let P (t) = [p (ei, ej, t)]1≤i,j≤d denote the corresponding stochastic transi-

tion probability matrix. Then, it is possible to show that the transition probabilities of

a continuous time Markov Chain satisfy the system of Backward Kolmogorov equations

ṗ (ei, ej, t) =
∑
k ̸=i

ϕikp (ek, ej, t)− νip (ei, ej, t) , (C.11)

with p (ei, ei, 0) = 1 and p (ei, ej, 0) = 0 as initial conditions, and where ṗ (ei, ej, t) =

lims→0
1
s
[p (ei, ej, t+ s)− p (ei, ej, t)] for all i, j in the state space of efficiency units E .

Furthermore, ϕij ≥ 0 denotes the instantaneous transition rates at which the labor effi-

ciency process jumps from state j to state i, and νi =
∑

j,j ̸=i ϕij.

Associated with the intensity rates, let us define Φ to be the generator, or transition

intensity matrix with elements

Φ =

−νi, if i = j

ϕij, if i ̸= j.

Then, the system of Backward Kolmogorov equations in (C.11) has the following matrix

representation

Ṗ (t) = ΦP (t) , P (0) = I,

with solution

P (t) = P (0) exp (Φt) .
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C.2 Stationary distribution

For illustration purposes suppose that the labor efficiency can take only two values,

e ∈ {el, eh}. Now, let us consider the case of an individual who is in state el at time

s. Then, p (el, eh, t) denotes the probability that the individual’s efficiency jumps from

state el at time s to state eh at time t. The instantaneous transition rates at which the

stochastic process jumps to state el from state eh, and to state eh from state el, are given

by ϕhl and ϕlh, respectively. Then, the transition probabilities at time t can be computed

from the solution to the system of Backward Kolmogorov equations in (C.11)

ṗ (eh, eh, t) = ϕhl [p (el, eh, t)− p (eh, eh, t)] ,

ṗ (el, eh, t) = ϕlh [p (eh, eh, t)− p (el, eh, t)]

with initial conditions p (eh, eh, s) = 1 and p (el, eh, s) = 0. The solution to this system

of ordinary differential equations is given by

p (eh, eh, t) =
ϕlh

ϕhl + ϕlh

+
ϕhl

ϕhl + ϕlh

e−(ϕhl+ϕlh)(t−s) (C.12)

p (el, eh, t) =
ϕlh

ϕhl + ϕlh

− ϕlh

ϕhl + ϕlh

e−(ϕhl+ϕlh)(t−s). (C.13)

Now let p (eh, s) denote the unconditional probability of being in state eh at time s. The

unconditional probability of being in the same state at time t > s can be computed

according to:

p (eh, t) = p (eh, s) p (eh, eh, t) + (1− p (eh, s)) p (el, eh, t) . (C.14)

In the limit as t → ∞ the unconditional probability of having an endowment of high

efficiency is given by:

lim
t→∞

p (eh, t) = p (eh) =
ϕlh

ϕhl + ϕlh

. (C.15)

A similar procedure can be used to show that the stationary and unconditional prob-

ability of having an endowment of low efficiency is:

lim
t→∞

p (el, t) = p (el) =
ϕhl

ϕhl + ϕlh

. (C.16)

The system of equations formed by (C.12) and (C.13) together with an appropriate

choice of (t− s) can be used to back out the instantaneous transition rates of the Poisson

processes, ϕhl and ϕlh from any probability transition matrix. Given the annual frequency

used in the calibration of the model of Section 2, we set (t− s) = 1 (one year).
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D Computation of the stationary equilibrium

The computation of the stationary density of wealth is done following the method pro-

posed in Achdou et al. (2022) which consists of two main blocks. The first block computes

the stationary general equilibrium at the macro level using the following fixed point al-

gorithm in the time-invariant aggregate capital stock:

Algorithm D.1 (Stationary General Equilibrium) Make an initial guess for the

interest rate, r(0), and then for j = 0, 1, . . . :

1. Compute the optimal consumption functions c(j) (a, eh) and c(j) (a, el) and the sub-

densities g(j) (a, eh) and g(j) (a, el).

2. Compute capital demand Kd and capital supply Ks.

3. Update r(j+1) using a combination of bisection, secant, and inverse quadratic inter-

polation methods.

4. If
∥∥Ks −Kd

∥∥ < ϵ stop, otherwise return to step 1.

Algorithm D.1 does not require to update the aggregate labor supply L at each iteration

j = 0, 1, . . . since in our prototype economy the labor supply is assumed to be exogenous.

The second block approximates both the solution to the household’s problem at the

micro level and to the Fokker-Planck equations using the finite difference methods sug-

gested in Candler (1999) and Achdou et al. (2022). These solutions, which are required in

step 2 of Algorithm D.1 for every iteration j = 0, 1, . . . , are computed in two independent

stages. The first stages approximates the policy functions for consumption that solve the

HJB equations (9) and (10), while the second stage approximates the subdensities of

wealth that solve the Fokker-Planck equations (15) and (16).

D.1 Solving the Hamilton-Jacobi-Bellman equations.

Consider first the solution to the HJB equations. For each et ∈ E , the finite difference

method approximates the function V (at, et) on an equally spaced grid for wealth with

I discrete points, ai, i = 1, . . . , I, where ai ∈ A = [amin, amax] and amin = a. The

distance between points is denoted by ∆a and we introduce the short-hand notation

Ve,i ≡ V (ai, e). The derivative Va (ai, e) ≡ V ′
e,i is computed with either a forward or a

backward difference approximation:

V
′F
e,i ≈ Ve,i+1 − Ve,i

∆a
(D.17)

V
′B
e,i ≈ Ve,i − Ve,i−1

∆a
. (D.18)
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Following Candler (1999), the choice of difference operator is based on an upwind dif-

ferentiation scheme. The correct approximation is based on the direction of the continuous

state variable. Thus, if the saving function, s (ai, e) ≡ se,i = rai + we − (u′)−1 (V ′
e,i

)
, is

positive we use a forward operator and if it is negative we use the backward operator.

This gives rise to the following upwind operator:

V ′
e,i = V

′F
e,i 1{sFe,i>0} + V

′B
e,i 1{sBe,i<0} + V̄ ′

e,i1{sFe,i<0<sBe,i} (D.19)

where 1{·} denotes the indicator function and, sFe,i and sBe,i the saving functions computed

with the forward and difference operators respectively. Following Achdou et al. (2022),

the concavity of the value function in the wealth dimension motivates the last term in

(D.19) since there could be grid points ai ∈ A for which sFe,i < 0 < sBe,i. In those cases,

they suggest to set savings to be equal to zero which implies that the derivative of the

value function is equal to V̄ ′
e,i = u′ (rai + we).

The finite difference approximation to the HJB equations is then given by:

ρVe,i = u (ce,i) + V ′
e,i [rai + ew − ce,i] + ϕ−ee [V−e,i − Ve,i]

for each e ∈ E , where optimal consumption is given by:

ce,i = (u′)
−1 (

V ′
e,i

)
,

and where the state-constraint boundary condition is enforced at the lower bound of the

state space, amin, by imposing V
′B
e,1 = u′ (ra1 + we).

The upwind representation of the HJB equation reads:

ρVe,i = u (ce,i) +
Ve,i+1 − Ve,i

∆a
(se,i)

+

+
Ve,i − Ve,i−1

∆a
(se,i)

− + ϕ−ee [V−e,i − Ve,i] (D.20)

where:

(se,i)
+ = max

{
rai + we− (u′)

−1
(
V

′F
e,i

)
, 0
}
,

(se,i)
− = min

{
rai + we− (u′)

−1
(
V

′B
e,i

)
, 0
}
,

denote the positive and negative parts of savings, respectively.

Equation (D.20) defines a highly non linear system of equations in Ve,i that can only be

solved by iterative methods. We follow Candler (1999) and set up an iterative procedure

based on the time-dependent HJB equation, V l
e,i ≡ V (ai, e, t). Then, from an arbitrary

initial condition we integrate forward in time until the solution is no longer a function
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of the initial condition, i.e. until it converges to the time-independent HJB, Ve,i. The

time-updating is carried out by means of an implicit scheme in which the value function

at the next time step, V l+1
e,i , is implicitly defined by the equation:

V l+1
e,i − V l

e,i

∆
+ ρV l+1

e,i = u
(
cle,i

)
+

V l+1
e,i+1 − V l+1

e,i

∆a

(
sle,i

)+
+

V l+1
e,i − V l+1

e,i−1

∆a

(
sle,i

)−
+ ϕ−ee

[
V l+1
−e,i − V l+1

e,i

]
(D.21)

where ∆ is the time step size, cle,i = (u′)−1
[(
V l
e,i

)′]
, and

(
V l
e,i

)′
is given by (D.19).

Equation (D.21) constitutes a system of 2 × I linear equations in V l+1
e,i with the fol-

lowing matrix representation:

AlVl+1 = bl (D.22)

where Vl+1 =
(
V l+1
el,1

, . . . , V l+1
el,I

, V l+1
eh,1

, . . . , V l+1
eh,I

)′
, bl is a vector with elements ble,i =

u
(
cle,i

)
+ V l

e,i/∆ and Al is the block matrix:

Al =

[
Ael −Φhl

−Φlh Aeh

]

with Φ−ee = −ϕ−eeII and

Ae =



ye,1 ze,1 0 . . . 0 0

xe,2 ye,2 ze,2 . . . 0 0

0 xe,3 ye,3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 · · · ye,I−1 ze,I−1

0 0 0 . . . xe,I ye,I


.

where

xe,i =

(
sle,i

)−
∆a

, ye,i =
1

∆
+ ρ+

(
sle,i

)+
∆a

−
(
sle,i

)−
∆a

+ ϕ−ee, ze,i = −
(
sle,i

)+
∆a

.

and e ∈ E . The iterative algorithm used to find the solution to the HJB equation can be

summarized as follows:

Algorithm D.2 (Solution of the HJB equation) Guess V 0
e,i for each e ∈ E and i =

1, . . . , I. Then for l = 0, 1, 2, . . . :

1. Compute
(
V l
e,i

)′
using (D.19).

2. Compute cle,i = (u′)−1 (V ′
e,i

)
.

3. Find V l+1
e,i by solving the system of equations defined in (D.22).
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4. If
∥∥V l+1

e,i − V l
e,i

∥∥ < ϵ stop. Otherwise, go to step 1.

D.2 Solving the Fokker-Planck equations.

Once the optimal consumption has been computed from Algorithm D.2, we proceed to

approximate the solution to the associated Fokker-Planck equations (15) and (16). As

before, we use a finite difference method and apply it to:

0 = − ∂

∂at
[s (at, el) g (at, el)]− ϕhlg (at, el)− ϕlhg (at, eh) , (D.23)

0 = − ∂

∂at
[s (at, eh) g (at, eh)]− ϕlhg (at, eh)− ϕhlg (at, el) (D.24)

which corresponds, as shown in Appendix B above, to an alternative representation of (15)

and (16). We further need to restrict the solution to satisfy the integrability condition:

1 =
∑

et∈{el,eh}

∞̂

−∞

g (at, et) da. (D.25)

The system of equations (D.23)-(D.25) is discretized as follows:

0 = − [se,ige,i]
′ − ϕ−eege,i − ϕe,−eg−e,i (D.26)

1 =
∑

et∈{el,eh}

I∑
i=1

ge,i∆a. (D.27)

where ge,i ≡ g (ai, e). To approximate the derivative [se,ige,i]
′ we use the upwind differen-

tiation scheme:

[se,ige,i]
′ =

(se,i)
+ge,i−(se,i−1)

+ge,i−1

∆a
+

(se,i+1)
−ge,i+1−(se,i)

−ge,i
∆a

,

where se,i = rai + we − (u′)−1 (V ′
e,i

)
is the optimal savings function obtained from the

solution to the HJB equation. Equation (D.26) defines a system of 2× I linear equations

in ge,i with matrix representation:

Bg = 0 (D.28)

where g = (gel,1, . . . , gel,I , geh,1, . . . , geh,I)
′. The matrix B is defined as B = Ã⊤, where

Ã = −A +
(
ρ+ 1

∆

)
I. The matrix Ã captures the evolution of the continuous-time

stochastic processes {at, et}∞t=0. To impose the integrability condition in (D.25) we follow

Achdou et al. (2022) and fix ge,i = 0.1 for an arbitrary i. Then solve the system of

equations in (D.28) for some g̃, and proceed to re-normalize ge,i = g̃e,i/(
∑

e,i g̃e,i∆a).
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E Sensitivity of the wealth distribution

For the model in Section 2, the probability density function of wealth can be obtained

from the subdensity functions that solve the Fokker-Plank equations (15) and (16). Using

the identity in (13) the (marginal) stationary probability density function of wealth is

then given by

g (a | θ) = g (a, el | θ) + g (a, eh | θ) , (E.29)

where θ ∈ Θ ⊂ RM denotes the M × 1 vector of structural parameters in the model,

and where Θ is the parameter space, assumed to be compact. The population values of

the structural parameters of the model, θ0, are those given in Table 1 in the main text.

Since the probability density function is the central component of the maximum like-

lihood estimator’s objective function (see Equations (17) and (18) in the main text),

examining its behavior provides important information on whether it is possible to iden-

tify the model parameters using the likelihood of the data. In particular, this Appendix

investigate whether it is possible (or not) to distinguish the model’s implied density func-

tion of wealth approximated using the true parameter values, g (a | θ0), from the density

function approximated using a range of parameter values that differ from those in the

population, g (a | θ), with θ ̸= θ0. In other words, we are interested in studying the sen-

sitivity of the probability density function of wealth when the sampling process is known.

Figure E.1 plots the density function of wealth for each of the parameters of the

model. In each plot, we perturb within an economically reasonable range the parameter

under consideration below and above its population value. The remaining parameters are

kept at their true values in the population. The figure reveals that the density function

of wealth is sensitive to small changes in the subjective discount factor, ρ, the capital

share in output, α, the depreciation rate of capital, δ. On the other hand, changes in the

coefficient of relative risk aversion, γ, and the parameters describing the income process,

ϕ (e) and e, do not impact change the model’s distribution of wealth. As discussed in the

main text, we interpret the latter as a source of weak identification problems given that

different parameter values deliver the same density function.
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Figure E.1. Sensitivity of the wealth distribution. The graph shows the sensitivity of
the distribution of wealth, g (a | θ), for selected parameters θ ∈ θ. The dashed line denotes
the population density of wealth. The continuous lines correspond to the density of wealth
resulting from small perturbations in each parameter while keeping the remaining ones at their
true value.
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F Additional results

Table F.1. Conditional estimates: preference parameters fixed to their population
values. The table reports the Mean Absolute Normalized Error (MANE) and the Mean
Normalized Bias (MNB, in parenthesis) from a Monte Carlo experiment with M = 200 samples,
each of them of size N =5,000. The ML estimation is conditional on the preference parameters
being fixed to their population values as indicated in the second row. The ML estimation uses
data on individual wealth and income.

Wealth and income

θ γ = γ0 ρ = ρ0 α = α0 δ = δ0 α = α0 and
δ = δ0

No
restrictions

γ γ0 2.4793
(0.633)

3.0433
(0.065)

2.6989
(0.055)

2.5315
(0.010)

2.2969
(0.084)

ρ 0.3745
(0.170)

ρ0 0.3604
(−0.234)

0.3291
(−0.027)

0.4754
(−0.484)

0.3125
(−0.011)

α 0.1817
(−0.178)

0.2686
(−0.269)

α0 0.2545
(−0.267)

α0 0.2206
(−0.229)

δ 0.1783
(0.143)

0.1982
(0.068)

0.5313
(0.612)

δ0 δ0 0.1941
(0.135)

el 1.4518
(0.945)

3.3686
(2.605)

2.1285
(1.296)

2.9364
(1.831)

0.7651
(0.148)

2.9053
(2.016)

eh 0.8410
(0.873)

0.9460
(0.974)

0.5563
(0.575)

0.8214
(0.882)

0.2340
(−0.241)

0.8579
(0.898)

ϕlh 0.3681
(0.342)

0.4152
(−0.092)

0.4476
(−0.059)

0.4136
(0.078)

0.4391
(−0.323)

0.3891
(0.057)

ϕhl 0.3830
(0.320)

0.4157
(−0.083)

0.4556
(−0.089)

0.4182
(0.064)

0.4471
(−0.352)

0.3979
(0.046)
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Table F.2. Maximum likelihood estimates for model with heterogeneous discount-
ing. The table reports the maximum likelihood estimates (MLE) using a of N =18,631
observations on individual wealth and income. The coefficient of relative risk aversion is cali-
brated to γ = 1.0. The model structure is similar to that of the model in Section 2. The model
has two state variables: individual wealth, a, and individual’s income-impatience, x. The latter,
captures simultaneously the income (ei, i = h, l) and discount rate heterogeneity (ρi, i = h, l)
faced by the individuals. Thus, x can take four different values, x1 = (el, ρl), x2 = (el, ρh),
x3 = (eh, ρl), and x4 = (eh, ρh). The transition across state values is modelled through the
following exogenous process: dxt =

∑
i,j

∑
j ̸=i(xi − xj)dqij,t, where the Poisson process qij,t for

all i, j = 1, 2, 3, 4 and i ̸= j counts the frequency with which an agent moves from state i to
state j. The transition rates from state i to state j are given by ϕi,j ≥ 0, and since an individual
cannot transit to state i while currently being in the same state it follows that ϕii = 0 for all i.

Panel A: Preference parameters

Parameter ρl ρh α δ

Value 0.0237 0.0481 0.4268 0.0978

Panel B: Income levels, ei

Parameter el eh

Value 0.5185 1.1739

Panel C: Intensity rates, ϕi,j (× 100)

el, ρl el, ρh eh, ρl eh, ρh

el, ρl 0 0.0220 0.0148 0.0073

el, ρh 0.2392 0 0.0000 0.0086

ehρl 0.0620 0.1862 0 0.0104

eh, ρh 0.0000 0.4125 0.0000 0

Panel D: Stationary probabilities (%)

p (e, ρ) 80.04 12.56 0.0458 0.0182

Table F.3. Wealth Inequality: data vs. model with heterogeneous discounting. The
table reports the observed and estimated Gini coefficient and the distribution of wealth across
top percentiles.

% wealth in top

Gini Coefficient 5% 10% 20%

SCF 2013 data 0.8048 57.73 70.27 83.44

Model implied 0.5427 19.38 33.03 53.69
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