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A Alternative estimation approaches

A.1 The regression-based approaches

In this section we propose regression-based procedures to obtain benchmark parameter esti-

mates. To start with, we employ unrestricted ordinary least squares (OLS) to get reduced-

form parameters, although this does not identify the structural parameters of interest. Next,

we consider cross-equation correlation, controlling for endogeneity through instrumental vari-

ables (IV), and estimation of structural parameters by minimum distance.

A.1.1 Reduced-form model

With s− t fixed at ∆, and using the proxy series r̂t in (17), the system (15) is linear in a set

of reduced-form parameters and may be recast as

yj,t = xj,tβj + εj,t, j = C, Y, r, (A.1)

where the left-hand side variables are yC,t = ln(Ct/Ct−∆)−
∫ t

t−∆
rfvdv, yY,t = ln(Yt/Yt−∆)−∫ t

t−∆
rfvdv, and yr,t = rft .

1 The right-hand side variables xt = (xC,t, xY,t, xr,t), with xC,t =

1, xY,t = (1,
∫ t

t−∆
1/r̂vdv,

∫ t

t−∆
1/r̂2vdv), and xr̂,t = (1, r̂t−∆). The reduced-form or linear

parameters, βC , βY = (βY,1, βY,2, βY,3)
⊤, and βr = (βr,1, βr,2)

⊤, are given in terms of the

structural parameters φ = (κ, γ, η, ρ, δ, σ)⊤ as

βC = −
(
ρ− 1

2
σ2
)
∆, (A.2a)

βY,1 = −
(
κ + ρ− 1

2
σ2
)
∆,

βY,2 = κγ,
βY,3 = −1

2
η2,

(A.2b)

βr,1 = (1− e−κ∆)(γ − δ − σ2),
βr,2 = e−κ∆.

(A.2c)

Hence, the system (15) can be summarized in the form of simple regression equations, with

error terms given by

εC,t = σ(Zt − Zt−∆), (A.3a)

εY,t =

∫ t

t−∆

η/r̂vdBv + σ(Zt − Zt−∆), (A.3b)

εr,t = ηe−κ∆

∫ t

t−∆

eκ(v−(t−∆))dBv. (A.3c)

1In cases where δ and σ in (17) are identified by the remaining system of equations, we may interpret
fixed values δ0 and σ0 in the construction of the auxiliary variable r̂t as starting values, then estimate the full
set of parameters of the model and update the values for δi = δ̂i−1 and σi = σ̂i−1 recursively for i = 1, 2, . . .
Alternatively, a nonlinear one-step regression-based approach could be implemented.
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Using iterated expectations and the properties of stochastic integrals, if the parameters are

at their true values, including δ0 and σ0 in (17), then the error terms are clearly serially un-

correlated, i.e., E(εj,tεj,t−∆) = 0, j = C, Y, r. For a simple reduced-form estimator, linearity

in β suggests unrestricted equation-by-equation OLS,

β̂j = (x⊤j xj)
−1x⊤j yj, j = C, Y, r, (A.4)

where xj is the matrix with typical row xj,t and yj the vector with typical entry yj,t. The

structural parameter estimates, obtained by minimum distance applied to the reduced-form

estimates (A.4) using the link (A.2a)-(A.2c) (or by an asymptotically equivalent restricted

nonlinear least squares regression), serve as useful benchmarks for assessing more elaborate

structural approaches. We next discuss enhancing the basic OLS-based estimators by correc-

tion for contemporaneous cross-equation correlation of errors and endogeneity of right-hand

side variables, then present the minimum distance approach yielding the structural param-

eter estimates.

A.1.2 Cross-equation correlation

The estimators (A.4) allow for different variances of the error terms εj,t, say, σ
2
j , j = C, Y, r,

as they are implemented separately by equation. However, they do not exploit all other

properties of the errors. The present model structure implies both different right-hand side

variables (indeed, of different dimensions) across the equations, and cross-equation corre-

lation of the errors. In particular, from (A.3a)-(A.3c), the term σ(Zt − Zt−∆) is common

to both εC,t and εY,t, whereas both εY,t and εr,t involve stochastic integrals with respect to

Bv. Classical seemingly unrelated regressions (SUR) analysis is intended to exploit such

cross-equation correlation in the errors to improve efficiency in estimation exactly in cases

where the right-hand side variables are not common across equations. This suggests that

a standard SUR correction of the reduced-form estimates should be more efficient than the

OLS estimates, and, hence, that structural parameter estimates backed out from the SUR

estimates (using minimum distance) should dominate those based on OLS.

Let ε̂ be the T × 3 matrix of OLS residuals, with typical row (ε̂C,t, ε̂Y,t, ε̂r,t), where T is

the number of time periods in the data set. The SUR estimate of the 3×3 contemporaneous

system variance-covariance matrix is Σ̂ = ε̂⊤ε̂/T (in particular, the residual variance esti-

mates along the diagonal coincide with the standard OLS assessments), and the FGLS-SUR

estimate of β = (βC , β
⊤
Y , β

⊤
r )

⊤ is

β̂SUR = (x⊤V̂ −1x)−1x⊤V̂ −1y, (A.5)

where y is the 3T -vector stacking the yj, x is the conformable matrix with the xj along

the block-diagonal, and V̂ −1 = Σ̂−1 ⊗ IT , with IT the identity matrix and ⊗ the Kronecker
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product. The variance-covariance matrices of the SUR (and OLS) estimators are given in

Appendix A.2.

A.1.3 Endogeneity

The regression approaches (OLS and SUR) do not control for possible endogeneity of right-

hand side variables in (15), and hence (A.1), which may be an issue in the DSGE model. In

particular, xY,t includes two integrals involving the evolution of the auxiliary variable in (17)

from t−∆ through t and so is correlated with both εr,t and εY,t. The standard regression-

based tool for handling endogeneity is instrumental variables (IV). Here, we consider first-

stage regressions of each of xY,t,2 =
∫ t

t−∆
1/r̂vdv and xY,t,3 =

∫ t

t−∆
1/r̂2vdv on their respective

lags xY,t−∆,2 and xY,t−∆,3 and an intercept. Next, in the computation (A.4) of β̂Y , fitted

values from the first stage regressions replace xY,t,2 and xY,t,3. Third, fitted residuals are

calculated using the new second stage estimate β̂Y but the original xY,t,2 and xY,t,3 (not their

fitted values from the first stage), and these residuals form the basis of the IV assessment

of Σ̂. Finally, an FGLS-SUR-IV step is carried out using this new Σ̂ in calculating β̂SUR in

(A.5) and again using the fitted values for xY,t,2 and xY,t,3. This combination of FGLS, SUR,

and IV (labeled FGLS-SUR-IV) appears to be novel.

Note that the lagged values of the relevant integrals involving the auxiliary variable r̂s,

t − 2∆ ≤ s ≤ t − ∆, may correlate with r̂t−∆, and hence with εY,t from (A.3b), although

presumably less than without lagging (this is the idea of the instrumentation). Any such

correlation between the error terms and the right-hand side variables (even when using

fitted values) indicates that part of the endogeneity issue remains. For a full solution and a

consistent and asymptotically efficient estimator, we therefore present the MEF approach in

the main text, exploiting the martingale structure of the model.

A.1.4 Minimum distance

The structural parameters are φ = (κ, γ, η, ρ, δ, σ)⊤, a total of six. They are identified

by exploiting the way in which they enter into the reduced-form parameters β = β(φ).

From (A.2a)-(A.2c), we may this way identify ρ − 1
2
σ2, κ, γ, η, and δ + σ2, i.e., three

structural parameters, and two independent combinations of the remaining three. Note that

this identification is conditional on the chosen value δ0 + σ2
0 in the auxiliary variable r̂t that

enters the regressors in (A.1). When iterating, this value is updated, as exactly the parameter

combination δ + σ2 is one of the five that are conditionally identified. Ultimately, this

identifies these five parameter functions. Instead of obtaining the five parameter functions,

one can impose restrictions on ρ, δ, or σ2 to identify all other parameters. Instead, without

the need for such additional restrictions, it is possible to separate ρ, δ, and σ2, and thus
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identify all six structural parameters, by exploiting the functional form of the error variances

(the variances of (A.3a)-(A.3c)). Indeed, including the variance of the residual (A.3a) from

the consumption equation as a separate moment along with the relations (A.2a)-(A.2c)

clearly identifies σ2 and thereby the full parameter vector φ, i.e., all six structural parameters.

Why should we rely on the first moment conditions and thus the regression coefficients,

only, if they do not identify all structural parameters? In models with, say, stochastic volatil-

ity or more elaborate preference specification, the error term of the consumption equation

becomes intractable (like the residual of the output equation). In such a case, the econo-

metrician may exploit the martingale property only, without considering second moment

conditions - namely, the form of the error variances and covariances. Because we want to

keep our analysis applicable to such specifications, we focus on how to estimate the (iden-

tified) parameters from first moments in the main text, without going to higher moments.

For comparison we show the results if we used the residual variance of the consumption and

the interest rate equation in this web appendix.

In the given setup, with either five or six structural parameters thus identified, we extract

estimates of them from the OLS, SUR, or FGLS-SUR-IV reduced-form parameter estimates

using a minimum distance approach. We carry out minimum distance estimation based on

either of three different unrestricted parameter sets ωi, i = 1, 2, 3, from the reduced-form

regressions: (1) the estimates of β in (A.2), i.e., the theoretical and empirical moments to

match with respect to choice of φ are ω1(φ) = β(φ) and ω̂1 = β̂ (this is the first moments

or regression coefficients only case); (2) β along with the variance σ2∆ of the consumption

equation residual in (A.3a), so that ω2(φ) = (ω1(φ)
⊤, σ2∆)⊤ and ω̂2 = (ω̂⊤

1 , Σ̂CC)
⊤, with

Σ̂CC the upper left entry in the residual covariance matrix Σ̂; (3) β along with the variances

of the consumption and interest rate residuals (A.3a) and (A.3c), ω3(φ) = (ω2(φ)
⊤, 1

2
η2(1−

e−2κ∆)/κ)⊤ and ω̂3 = (ω̂⊤
2 , Σ̂rr)

⊤. In each of the three cases, we solve the problem

φ̂ = argmin
φ

(ωi(φ)− ω̂i)
⊤ Ω̂−1

i (ωi(φ)− ω̂i) .

Here, the relevant metrics are given by the precisions of the reduced form estimates,

Ω̂−1
1 =




Σ̂CCx⊤CxC Σ̂CY x⊤CxY Σ̂Crx⊤Cxr
Σ̂Y Cx⊤Y xC Σ̂Y Y x⊤Y xY Σ̂Y rx⊤Y xr
Σ̂rCx⊤r xC Σ̂rY x⊤r xY Σ̂rrx⊤r xr


 ,

Ω̂−1
2 =

(
Ω̂−1

1 06×1

01×6

(
2Σ̂2

CC

)−1

)
, Ω̂3 =

(
Ω̂−1

2 07×1

01×7

(
2Σ̂2

rr

)−1

)
,

with Σ̂ij the (i, j)’th entry in Σ̂−1.

The indicated matrix Ω̂−1
1 is for the case where the reduced form estimates β̂ are obtained

using SUR, i.e., Ω̂1 = V̂SUR. If β̂ is instead obtained by OLS as in (A.4), then the correct
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Ω̂1 = V̂OLS is given in Appendix A.2. A naive OLS assessment of Ω̂−1
1 would have zero

off-diagonal blocks, and diagonal blocks Σ̂−1
jj x

⊤
j xj in the minimum distance approach. With

endogeneity correction, i.e., the reduced form estimates are obtained by FGLS-SUR-IV,

again the minimum distance approach requires a variance-covariance matrix, and this has

the same form as in the SUR case, but with the new Σ̂ from the FGLS-SUR-IV approach

and with fitted values for the relevant portions of x.

In case (1), using first moment conditions and thus β, only, to set up the minimum

distance problem, estimators that are asymptotically equivalent to the resulting minimum

distance estimators are alternatively obtained by restricted (nonlinear) regression, minimiz-

ing the OLS respectively the SUR objective function with respect to φ under the relevant

restrictions (A.2a)-(A.2c) on β. In particular, the OLS objective is
∑

j=C,Y,r ε
⊤
j εj/Σ̂jj and

the SUR objective
∑T

t=1 ε
⊤
t Σ̂

−1εt, where εj and εt are residual vectors of dimension T and

3, respectively, with elements εj,t. In cases (2) and (3), when estimated residual variances

are used along with the relations (A.2a)-(A.2c) to identify structural parameters in the

minimum distance case, then an asymptotically equivalent estimator may be obtained by

iterating on structural parameters as they enter both εt and Σ = Σ(φ), used instead of Σ̂ in

the modified SUR objective function, say, SUR∗(φ) =
∑T

t=1 ε(φ)
⊤
t Σ(φ)

−1ε(φ)t, or, even bet-

ter, T log |Σ(φ)|+ SUR∗(φ). This use of (minus twice) the Gaussian log-likelihood function

amounts to quasi maximum likelihood (QML) since clearly εY,t in (A.3b) is non-Gaussian.

A.2 The SUR estimator

The standard SUR assessment of the asymptotic variance-covariance matrix of β̂SUR is

V̂SUR = (x⊤V̂ −1x)−1. Note that the (i, j)’th block of the matrix being inverted is Σ̂ijx⊤i xj ,

with Σ̂ij the (i, j)’th entry in Σ̂−1. Thus,

V̂SUR =




Σ̂CCx⊤CxC Σ̂CY x⊤CxY Σ̂Crx⊤Cxr
Σ̂Y Cx⊤Y xC Σ̂Y Y x⊤Y xY Σ̂Y rx⊤Y xr
Σ̂rCx⊤r xC Σ̂rY x⊤r xY Σ̂rrx⊤r xr




−1

.

If the covariances Σ̂ij (i 6= j) are zero, then the estimated asymptotic variance of β̂j coincides

with the OLS assessment Σ̂jj(x
⊤
j xj)

−1. More generally, the SUR approach suggests that the

variance-covariance matrix V̂OLS of the unrestricted OLS estimator from (A.4) has blocks

estimated as Σ̂ij(x
⊤
i xi)

−1x⊤i xj(x
⊤
j xj)

−1, i.e., V̂OLS equals




Σ̂CC(x
⊤
CxC)

−1(x⊤CxC)(x
⊤
CxC)

−1 Σ̂CY (x
⊤
CxC)

−1(x⊤CxY )(x
⊤
Y xY )

−1 Σ̂Cr(x
⊤
CxC)

−1(x⊤Cxr)(x
⊤
r xr)

−1

Σ̂Y C(x
⊤
Y xY )

−1(x⊤Y xC)(x
⊤
CxC)

−1 Σ̂Y Y (x
⊤
Y xY )

−1(x⊤Y xY )(x
⊤
Y xY )

−1 Σ̂Y r(x
⊤
Y xY )

−1(x⊤Y xr)(x
⊤
r xr)

−1

Σ̂rC(x
⊤
r xr)

−1(x⊤r xC)(x
⊤
CxC)

−1 Σ̂rY (x
⊤
r xr)

−1(x⊤r xY )(x
⊤
Y xY )

−1 Σ̂rr(x
⊤
r xr)

−1(x⊤r xr)(x
⊤
r xr)

−1




−1

and V̂OLS ≥ V̂SUR in the partial order of positive semi-definite matrices.
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A.3 Transition probability matrix

This section derives the transition probability matrix for the continuous-time Markov chain

of the regime-switching model (cf. Section 3.3.2).

Consider the following question that we use in our estimation approach: If the volatility

is high at time s ≤ t, then what is the probability that volatility is high at time t?

Following Ross (2014, p.371), let Pij(t) ≡ P (ηt = ηj | ηs = ηi) for s ≤ t denote the

probability that a process presently in state i will be in state j at time t, and φij the

instantaneous transition rates, when in state i, at which the process makes a transition into

state j. We shall derive the desired probability, namely Phh(t) by solving

Ṗhh(t) = φhl [Plh(t)− Phh(t)] ,

Ṗlh(t) = φlh [Phh(t)− Plh(t)] ,

Ṗij(t) ≡ limh→0[Pij(t + h) − Pij(t)]/h for all i, j ∈ Θ with initial conditions Phh(s) = 1 and

Plh(s) = 0. The solution to this system of ODEs is given by:

Phh(t) =
φlh

φhl + φlh
+

φhl

φhl + φlh
e−(φhl+φlh)(t−s), (A.6)

Plh(t) =
φlh

φhl + φlh

−
φlh

φhl + φlh

e−(φhl+φlh)(t−s). (A.7)

Hence, the transition probability matrix of the continuous-time Markov chain for s ≤ t is

P (t) =

[
Pll(t) Plh(t)
Phl(t) Phh(t)

]
, (A.8)

in which Pll(t) = 1− Plh(t) and Phl(t) = 1− Phh(t).

If we let Ph(s) denote the unconditional probability of being in state θh at time s, the

unconditional probability of being in the same state at time t > s is then

Ph(t) = Ph(s)Phh(t) + (1− Ph(s))Plh(t).

In the limit as t→ ∞ the unconditional probability of being in the high regime is

lim
t→∞

Ph(t) =
φlh

φhl + φlh
.

A similar procedure yields the unconditional probability of being in the low regime as

lim
t→∞

Pl(t) =
φhl

φhl + φlh

.

Conversely, from (A.6) and (A.7) we can back out the instantaneous transition rates of the

Poisson processes, φhl and φlh, from any given transition probability matrix.
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B Comparison to the discrete-time model

We now develop the model in discrete-time formulation in order to compare both approaches.

Before we start it is important to note that all state variables are directly comparable,

whereas the flow variables are expressed as periodic rates (instead of instantaneous rates).

B.1 The model

Production possibilities. For the ease of readability, we present the full model below. The

production function is a constant returns to scale technology

Yt = AtF (Kt, L), (B.1)

where Kt is the (predetermined) aggregate capital stock, L is the constant population size,

and At is total factor productivity, which follows an autoregressive process

At+1 − At = µ̃(At) + η̃(At)ǫA,t+1, ǫA ∼ N (0, 1), (B.2)

with µ(At) and η(At) generic drift and volatility functions.2 The capital stock increases if

gross investment It exceeds capital depreciation,

Kt+1 −Kt = It − δ̃Kt + σ̃KtǫK,t+1, ǫK ∼ N (0, 1), (B.3)

where δ̃ is a deterministic rate of depreciation and σ̃ determines the variance of the stochas-

tic depreciation.3 Similar to the continuous-time version, the stochastic depreciation does

depend on the level of the predetermined capital stock.

Equilibrium properties. In equilibrium, factors of production are rewarded with marginal

products r̃t = YK and w̃t = YL, subscripts K and L indicating derivatives, and the goods

market clears, Yt = Ct+It. Although there is no stochastic calculus for discrete-time models,

we may express the evolution of equilibrium output in this economy as

Yt+1 = (At + µ̃(At) + η̃(At)ǫA,t+1)F (Kt + It − δ̃Kt + σ̃KtǫK,t+1, L). (B.4)

Preferences. Consider an economy with a single consumer, interpreted as a representative

“stand-in” for a large number of identical consumers. The consumer maximizes expected

additively separable discounted life-time utility given by

U0 ≡ E0

∞∑

t=0

β̃tu(Ct, At)dt, uC > 0, uCC < 0, (B.5)

2We assume that E(At) = A ∈ R+ exists, and that the sum describing life-time utility in (B.5) below is
bounded, so that the value function is well-defined.

3It is insightful to relate the two shocks in the system to the continuous-time counterpart by looking at
the Euler approximation ǫA,t+1 ≡ Bt+1 −Bt ∼ N (0, 1) and ǫK,t+1 ≡ Zt+1 − Zt ∼ N (0, 1).
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subject to

Kt+1 −Kt = (r̃t − δ̃)Kt + w̃tL− Ct + σ̃KtǫK,t+1, (B.6)

where β̃ is the subjective discount factor, r̃t is the rental rate of capital, and w̃t is the labor

wage rate. The paths of factor rewards are taken as given by the representative consumer.

B.2 The Euler equation

The relevant state variables are capital and technology, (Kt, At). For given initial states, the

value of the optimal program is

V (K0, A0) = max
{Ct}∞t=0

U0 s.t. (B.6) and (B.2), (B.7)

i.e., the present value of expected utility along the optimal program. As a necessary condition

for optimality, Bellman’s principle gives at time s

V (Ks, As) = max
Cs

{
u(Cs, As) + β̃Es [V (Ks+1, As+1)]

}
. (B.8)

Hence, the first-order condition for the problem is

uC(Ct, At) = β̃Et [VK(Kt+1, At+1)] , (B.9)

for any t ∈ [0,∞), and this allows us to write consumption as a function of the state

variables, Ct = C(Kt, At). Hence, the discrete-time model requires evaluating an integral

(integrating out expectations) to obtain the optimal consumption function. The reason is

that the Hamilton-Jacobi-Bellman (HJB) equation in the discrete-time model (B.8) requires

to solve a stochastic difference equation in contrast to a deterministic differential equation.

Using the concentrated Bellman equation,

V (Kt, At) = u(C(Kt, At)) + β̃EtV (Kt+1, At+1)

we obtain

VK(Kt, At) = β̃Et

[
VK(Kt+1, At+1)(1− δ̃ + r̃t + σ̃ǫK,t+1)

]

= (1− δ̃ + r̃t)uC(Ct, At) + β̃Et [VK(Kt+1, At+1)σ̃ǫK,t+1] .

Note that the second term is zero in equilibrium, because from the first-order condition

uC(Ct, At)σ̃ǫK,t+1 = β̃Et [VK(Kt+1, At+1)] σ̃ǫK,t+1

⇔ Et [uC(Ct, At)σ̃ǫK,t+1] = β̃Et [Et [VK(Kt+1, At+1)] σ̃ǫK,t+1]

⇔ uC(Ct, At)σ̃Et [ǫK,t+1] = β̃Et [VK(Kt+1, At+1)σ̃ǫK,t+1]

⇔ 0 = β̃Et [VK(Kt+1, At+1)σ̃ǫK,t+1]
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Hence,

VK(Kt, At) = β̃Et

[
VK(Kt+1, At+1)(1− δ̃ + r̃t)

]

= (1− δ̃ + r̃t)uC(Ct, At).

Leading the expression one period ahead and applying expectations yields

Et [VK(Kt+1, At+1)] = Et

[
(1− δ̃ + r̃t+1)uC(Ct+1, At+1)

]
.

Inserting back into the first-order condition (B.9) we arrive at the Euler equation

uC(Ct, At) = β̃Et

[
(1− δ̃ + r̃t+1)uC(Ct+1, At+1)

]
, (B.10)

In the following, we restrict attention to the case u(Ct, At) = u(Ct).

B.3 Equilibrium dynamics

Our equilibrium dynamics of the economy can be summarized as

u′(Ct) = β̃Et

[
(1− δ̃ + r̃t+1)u

′(Ct+1)
]

(B.11a)

Yt+1 = (At + µ̃(At) + η̃(At)ǫA,t+1)F (Kt + It − δ̃Kt + σ̃KtǫK,t+1, L) (B.11b)

Kt+1 = (1 + r̃t − δ̃)Kt + w̃tL− Ct + σ̃KtǫK,t+1 (B.11c)

At+1 = At + µ̃(At) + η̃(At)ǫA,t+1 (B.11d)

Provided that variables Ct, Yt, Kt and also At are observed, the econometrician needs to

consider the system (B.11) for statistical inference on the deep parameters.

For comparison, the equilibrium dynamics the corresponding continuous-time economy

of the model used in the main text can be summarized as

dCt =
u′(Ct)

u′′(Ct)
(ρ− (rt − δ))dt− σ2CKKtdt−

1
2
(C2

Aη(At)
2 + C2

Kσ
2K2

t )
u′′′(Ct)

u′′(Ct)
dt

+CAη(At)dBt + CKσKtdZt (B.12a)

dYt = YAdAt + YKdKt +
1
2
YKKσ

2K2
t dt

= (µ(At)YA + (It − δKt)YK + 1
2
YKKσ

2K2
t )dt+ YAη(At)dBt + σYKKtdZt(B.12b)

dKt = (It − δKt)dt+ σKtdZt (B.12c)

dAt = µ(At)dt+ η(At)dBt (B.12d)

Provided that Ct, Yt, Kt and also At are observed, the econometrician needs to consider the

system (B.12) for statistical inference on the deep parameters.

In what follows, we assume that the capital stock Kt and At are latent variables, but we

can obtain them from financial market data.
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B.4 The AK-Vasicek model with logarithmic preferences

Consider an AK economy, Yt = AtKt, which implies r̃t = At and Kt = Yt/r̃t, and assume

that the consumer has logarithmic preferences, system (B.11) reduces to,

C−1
t = β̃Et

[
(1− δ̃ + r̃t+1)C

−1
t+1

]
(B.13a)

Yt+1 = (r̃t + µ̃(r̃t) + η̃(r̃t)ǫA,t+1) ((1 + r̃t − δ̃)(Yt/r̃t)− Ct + σ̃Yt/r̃tǫK,t+1) (B.13b)

r̃t+1 = r̃t + µ̃(r̃t) + η̃(r̃t)ǫA,t+1 (B.13c)

whereas system (B.12) reduces to

dCt = (rt − δ − ρ)Ctdt− σ2CKKtdt− (C2
Aη(At)

2 + C2
Kσ

2K2
t )/Ctdt

+CAη(At)dBt + CKσYt/rtdZt (B.14a)

dYt = (µ(rt)Yt/rt + (rt − δ)Yt − rtCt)dt+ η(rt)Yt/rtdBt + σYtdZt (B.14b)

drt = µ(rt)dt+ η(rt)dBt (B.14c)

Both systems give the model in terms of observables (macro and financial market data).

The Vasicek (1977) mean-reverting specification for the rental rate of physical capital is

µ(rt) = κ(γ − rt) and η(rt) = η, where κ > 0 is the speed and γ the target rate of mean

reversion, and η the constant volatility. The corresponding Vasicek mean-reversion model at

quarterly frequency reads µ̃(r̃t) = κ̃(γ̃ − r̃t) and η̃(r̃t) = η̃ where we define

γ̃ ≡ ∆γ, κ̃ ≡ 1− e−∆κ, η̃ ≡ ∆η
√

(1− e−2κ∆)/(2κ) (B.15)

In this case, the equilibrium dynamics are

C−1
t = β̃Et

[
(1− δ̃ + r̃t+1)C

−1
t+1

]
(B.16a)

Yt+1 = Yt + (r̃t − δ̃)Yt − r̃tCt + κ̃(γ̃ − r̃t)Yt/r̃t + η̃Yt/r̃tǫA,t+1 + σ̃YtǫK,t+1

+((r̃t − δ̃)Yt/r̃t − Ct + σ̃Yt/r̃tǫK,t+1) (κ̃(γ̃ − r̃t) + η̃ǫA,t+1) (B.16b)

r̃t+1 = r̃t + κ̃(γ̃ − r̃t) + η̃ǫA,t+1 (B.16c)

whereas system (B.14) reads

dCt = (rt − δ − ρ)Ctdt− σ2CKKtdt− (C2
Aη

2 + C2
Kσ

2K2
t )/Ctdt

+CAηdBt + CKσYt/rtdZt (B.17a)

dYt = ((κγ/rt − κ+ rt − δ)Yt − rtCt)dt+ ηYt/rtdBt + σYtdZt (B.17b)

drt = κ(γ − rt)dt+ ηdBt (B.17c)

Before we estimate the structural parameters, we need to solve the two models. This is

complicated by the fact that both models are highly nonlinear. Note that the AK-Vasicek
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model with logarithmic preferences in continuous time has an explicit analytical solution of

the nonlinear system, whereas the discrete-time analogue can only be solved numerically.

We follow a log-linear approximation of the discrete-time first-order conditions below and

use log-linear representation of the equilibrium dynamics for estimation.

One simple way of proceeding with the continuous-time system in order to match it to the

discrete-time nature of the data is to use an Euler scheme (as in Wang, Phillips, and Yu, 2011)

to discretize the system (B.14) for small time intervals (no approximation error in the limit).

This scheme has the nice feature that the discrete-time econometric toolbox (i.e., either linear

or nonlinear estimation methods following An and Schorfheide, 2007; Fernández-Villaverde,

Rubio-Ramı́rez, Sargent, and Watson, 2007; Fernández-Villaverde and Rubio-Ramı́rez, 2007)

can be applied and thus seems quite attractive. As explained in the main text, we do not

follow this route. Instead we proceed by integrating the system of equations and/or use

closed-form solutions, for example for the interest rate Vasicek specification. This allows us

to easily handle different frequencies for the estimation of structural parameters.

B.5 Log-linear approximation, discrete-time AK-Vasicek model

There are many ways to solve the discrete-time model numerically. The best practice is to

solve the model through a log-linear approximation to the set of first-order conditions. For

this we define auxiliary variables (which turn out to be stationary),

Ĉt ≡
Ct

Kt

, 1 + νt+1 ≡
Kt+1

Kt

and which can be used to transform the Euler equation (B.16a) into

1 = β̃Et

[
(1− δ̃ + r̃t+1)

Ct

Ct+1

Kt+1

Kt+1

Kt

Kt

]

= β̃Et

[
Ĉt

Ĉt+1

1− δ̃ + r̃t+1

1 + νt+1

]
(B.18)

We may write the aggregate resource constraint (B.16b) as

Yt+1 = r̃t+1(Kt + Yt − Ct − δ̃Kt + σ̃KtǫK,t+1)

⇔
Kt+1

Kt

= 1 +
Yt
Kt

−
Ct

Kt

− δ̃ + σ̃ǫK,t+1

or

νt+1 = r̃t − Ĉt − δ̃ + σ̃ǫK,t+1 (B.19)

As a reference level, with r̃t ≡ γ̃ for all t, the non-stochastic steady-state value is given from

the Euler equation, which implies steady-state value for the consumption-capital ratio

1 + ν = β̃(1− δ̃ + γ̃) ⇒ Ĉ = (1− β̃)(1− δ̃ + γ̃) (B.20)
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First, we rewrite (B.18) as

1

β̃
=

Ĉt

Ĉt+1

1− δ̃ + r̃t+1

1− δ̃ + r̃t − Ĉt + σ̃ǫK,t+1

− vt+1 ≡ G(ln Ĉt+1, ln Ĉt, r̃t+1, r̃t, ǫK,t+1, vt+1)

in which we defined the expectations error

vt+1 ≡
Ĉt

Ĉt+1

1− δ̃ + r̃t+1

1 + νt+1
− Et

[
Ĉt

Ĉt+1

1− δ̃ + r̃t+1

1 + νt+1

]
, Et(vt+1 = 0)

Second, we log-linearize the equation about the non-stochastic steady-state values

0 ≃ −
1

β̃
(ln Ĉt+1 − ln Ĉ) +

1

β̃2
(ln Ĉt − ln Ĉ) +

1− β̃

β̃Ĉ
(r̃t+1 − γ̃)−

1− β̃

β̃2Ĉ
(r̃t − γ̃)

−
σ̃(1− β̃)

β̃2Ĉ
ǫK,t+1 − vt+1

or

ln Ĉt+1 − ln Ĉ −
1− β̃

Ĉ
(r̃t+1 − γ̃) ≃

1

β̃
(ln Ĉt − ln Ĉ)−

1− β̃

β̃Ĉ
(r̃t − γ̃)

−
σ̃(1− β̃)

β̃Ĉ
ǫK,t+1 − vt+1

where we used

∂G

∂ ln Ĉt+1

∣∣∣∣
ss

= −
Ĉt

Ĉt+1

1− δ̃ + r̃t+1

1− δ̃ + r̃t − Ĉt + σ̃ǫK,t+1

∣∣∣∣∣
ss

= −
1− δ̃ + γ̃

1− δ̃ + γ̃ − Ĉ
= −

1

β̃
,

∂G

∂ ln Ĉt

∣∣∣∣
ss

=
Ĉt

Ĉt+1

1− δ̃ + r̃t+1

1− δ̃ + r̃t − Ĉt + σ̃ǫK,t+1

−
Ĉt

Ĉt+1

1− δ̃ + r̃t+1

(1− δ̃ + r̃t − Ĉt + σ̃ǫK,t+1)2
(−Ĉt)

∣∣∣∣∣
ss

=
1− δ̃ + γ̃

1− δ̃ + γ̃ − Ĉ
+ Ĉ

1− δ̃ + γ̃

(1− δ̃ + γ̃ − Ĉ)2
=

1

β̃2

∂G

∂rt+1

∣∣∣∣
ss

=
Ĉt

Ĉt+1

1

1− δ̃ + r̃t − Ĉt + σ̃ǫK,t+1

∣∣∣∣∣
ss

=
1

1− δ̃ + γ̃ − Ĉ
=

1− β̃

β̃Ĉ

∂G

∂rt

∣∣∣∣
ss

= −
Ĉt

Ĉt+1

1− δ̃ + r̃t+1

(1− δ̃ + r̃t − Ĉt + σ̃ǫK,t+1)2

∣∣∣∣∣
ss

= −
1− δ̃ + γ̃

(1− δ̃ + γ̃ − Ĉ)2
= −

1 − β̃

β̃2Ĉ

∂G

∂ǫK,t+1

∣∣∣∣
ss

= −
Ĉt

Ĉt+1

1− δ̃ + r̃t+1

(1− δ̃ + r̃t − Ĉt + σ̃ǫK,t+1)2
σ̃

∣∣∣∣∣
ss

= −
σ̃(1− β̃)

β̃2Ĉ

so that we get the matrix system
(

1 −(1 − β̃)/Ĉ
0 1

)(
ln Ĉt+1 − ln Ĉ
r̃t+1 − γ̃

)
=

(
1/β̃ −(1− β̃)/(β̃Ĉ)
0 1− κ̃

)(
ln Ĉt − ln Ĉ
r̃t − γ̃

)

+

(
−ǫ̃K,t+1 − vt+1

η̃ǫA,t+1

)
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where ǫ̃K,t+1 ≡ (σ̃(1− β̃)/(β̃Ĉ))ǫK,t+1. The matrix equation is of the form

Φ0zt+1 = Φ1zt + ξt+1 ⇒ zt+1 = (Φ−1
0 Φ1)zt + Φ−1

0 ξt+1

where zt is the vector of variables zt = (ln Ĉt−ln Ĉ, r̃t−γ̃)⊤, and Φ0 and Φ1 are the coefficient

matrices containing the structural parameters. Note that Φ−1
0 Φ1 can be found as

Φ−1
0 Φ1 =

(
1 (1− β̃)/Ĉ
0 1

)(
1/β̃ −(1− β̃)/(β̃Ĉ)
0 1− κ̃

)
=

(
1/β̃ (1− β̃)(1− κ̃− 1/β̃)/Ĉ
0 1− κ̃

)

and the eigenvalues are obtained from the characteristic equation |Φ−1
0 Φ1 − λI2| = 0 or

∣∣∣∣
1/β̃ − λ (1− β̃)(1− κ̃− 1/β̃)/Ĉ

0 1− κ̃− λ

∣∣∣∣ = (1/β̃ − λ)(1− κ̃− λ) = 0

which yields λ1 = 1/β̃ and λ2 = 1− κ̃. While the latter is positive and less than 1, the first

eigenvalue is greater than 1, that is, the economy will have a saddle path property, with a

single trajectory leading to the unique steady state of the system.

Hence, we obtain the linear solution to the homogeneous matrix equation

zt =

(
ln Ĉt − ln Ĉ
r̃t − γ̃

)
= C1(1/β̃)

t

(
1
0

)
+ C2(1− κ̃)t

(
(1− β̃)/Ĉ

1

)

Because we need to focus on the stable path, the stability condition requires C1 = 0 and

from the solution of the Vasicek specification we get C2 = r̃0 − γ̃. Hence, we find that

ln Ĉt − ln Ĉ =
1− β̃

Ĉ
(r̃t − γ̃)

⇔ ln(Ct/Kt) = ln Ĉ +
1

1− δ̃ + γ̃
(r̃t − γ̃) (B.21)

Given any value of r0 and initial value K0, we obtain the optimal level of consumption C0,

the next periods capital stock Kt+1 is obtained from (B.19).4 Using this solution, we get

ln(Ct+1/Ct)− ln(Kt+1/Kt) =
1

1− δ̃ + γ̃
(r̃t+1 − r̃t)

=
−κ̃

1− δ̃ + γ̃
(r̃t − γ̃) +

1

1− δ̃ + γ̃
η̃ǫA,t+1

Using a log-linear approximation of (B.19) and insert the solution such that

(1 + ν)(ln(Kt+1/Kt)− ln(1 + ν)) ≃ r̃t − γ̃ − Ĉ(ln Ĉt − ln Ĉ) + σ̃ǫK,t+1

= r̃t − γ̃ − (1− β̃)(r̃t − γ̃) + σ̃ǫK,t+1

= β̃(r̃t − γ̃) + σ̃ǫK,t+1

4Note that solving a linear (instead a log-linear) approximation would imply Ct/Kt = (1− β̃)(1− δ̃+ r̃t),
which could be then log-linearized to arrive at the same result ln(Ct/Kt) = ln Ĉ + (r̃t − γ̃)/(1− δ̃ + γ̃).
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or

ln(Kt+1/Kt) = ln(1 + ν) +
1

1− δ̃ + γ̃
(r̃t − γ̃) +

σ̃

1 + ν
ǫK,t+1 (B.22)

yields

ln(Ct+1/Ct) = ln(1 + ν) +
1− κ̃

1− δ̃ + γ̃
(r̃t − γ̃) +

σ̃

1 + ν
ǫK,t+1 +

η̃

1− δ̃ + γ̃
ǫA,t+1 (B.23)

such that the expectations error implied by our solution is (as from the Euler equation)

vt+1 ≡ −
σ̃

1 + ν
ǫK,t+1 (B.24)

which implies that Et(vt+1) = 0 and V art(vt+1) = σ̃2/(1 + ν)2.

We may use (B.22) together with a log-linear approximation of Yt = AtKt with At = r̃t

or

lnYt − lnKt ≃ γ̃ +
r̃t − γ̃

γ̃

(such that the interest rate does not appear as logarithmic function) to obtain

ln(Yt+1/Yt) = ln(1 + ν) +
r̃t+1 − r̃t

γ̃
+

1

1− δ̃ + γ̃
(r̃t − γ̃) +

σ̃

1 + ν
ǫK,t+1

= ln(1 + ν) +−
κ̃

γ̃
(r̃t − γ̃) +

1

1− δ̃ + γ̃
(r̃t − γ̃) +

σ̃

1 + ν
ǫK,t+1 +

η̃

γ̃
ǫA,t+1

= ln(1 + ν) +
γ̃ − κ̃(1− δ̃ + γ̃)

1− δ̃ + γ̃

r̃t − γ̃

γ̃
+

σ̃

1 + ν
ǫK,t+1 +

η̃

γ̃
ǫA,t+1

Summarizing, and using ln(1 + ν) = ln β̃ + ln(1− δ̃ + γ̃) ≈ ln β̃ − δ̃ + γ̃ yields

ln(Ct+1/Ct) = ln β̃ − δ̃ + γ̃ +
1− κ̃

1− δ̃ + γ̃
(r̃t − γ̃) +

σ̃ǫK,t+1

β̃(1− δ̃ + γ̃)
+

η̃ǫA,t+1

1− δ̃ + γ̃
(B.25a)

ln(Yt+1/Yt) = ln β̃ − δ̃ + γ̃ +
γ̃ − κ̃(1− δ̃ + γ̃)

1− δ̃ + γ̃

r̃t − γ̃

γ̃
+

σ̃ǫK,t+1

β̃(1− δ̃ + γ̃)
+
η̃ǫA,t+1

γ̃
(B.25b)

r̃t+1 = r̃t + κ̃(γ̃ − r̃t) + η̃ǫA,t+1 (B.25c)

In this AK-Vasicek model, the relation between the one-period risk-free rate and the rental

rate of capital is given by (see Section B.10)

(r̃ft − γ̃ + δ̃)(1− δ̃ + γ̃) + 1
2

(σ̃/β̃)2 + η̃2

(1− δ̃ + γ̃)
≈ (1− κ̃)(r̃t − γ̃)

so that we may write (B.25c) as

r̃ft+1 = r̃ft + κ̃(γ̃ − δ̃ − r̃ft )−
1
2
κ̃
(σ̃/β̃)2 + η̃2

(1− δ̃ + γ̃)2
+

1− κ̃

1− δ̃ + γ̃
η̃ǫA,t+1
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B.6 Summary of the two empirical specifications

In what follows, we use the empirical specifications where we may use financial market data

for identification and estimation of structural parameters. For the continuous-time version

we use the closed-form solution Ct = ρKt together with the nonlinear equilibrium dynamics.

For the discrete-time version we have approximately ln(Ct/Kt) = ln Ĉ + (r̃t − γ̃)/(1− δ̃+ γ̃)

together with the log-linear equilibrium dynamics.

First, based on quarterly data, the consumption (Euler) equations are

ln(Ct/Ct−1) = ln β̃ + r̃ft−1 +
1
2

(σ̃/β̃)2 + η̃2

(1− δ̃ + γ̃)2
+

σ̃

β̃(1− δ̃ + γ̃)
ǫK,t +

η̃

1− δ̃ + γ̃
ǫA,t

vs.

ln(Ct/Ct−∆) =

∫ t

t−∆

rfvdv −
(
ρ− 1

2
σ2
)
∆+ σ(Zt − Zt−∆)

Second, based on quarterly data, the output equations (resource constraints) yield

ln(Yt/Yt−1) = ln β̃ + r̃ft−1 +
1
2

(σ̃/β̃)2 + η̃2

(1− δ̃ + γ̃)2
−

(1− δ̃)κ̃

(1− κ̃)γ̃

(
r̃ft−1 − γ̃ + δ̃ + 1

2

(σ̃/β̃)2 + η̃2

(1− δ̃ + γ̃)2

)

+
σ̃

β̃(1− δ̃ + γ̃)
ǫK,t +

η̃

γ̃
ǫA,t

vs.

ln(Yt/Yt−∆) =

∫ t

t−∆

rfvdv + κγ

∫ t

t−∆

1/(rfv + δ + σ2)dv − 1
2
η2
∫ t

t−∆

1/(rfv + δ + σ2)2dv

−
(
κ + ρ− 1

2
σ2
)
∆+

∫ t

t−∆

η/(rfv + δ + σ2)dBv + σ(Zt − Zt−∆)

Third, based on quarterly data, the interest rate equations (Vasicek specifications) read

r̃ft = (1− κ̃)r̃ft−1 + κ̃

(
γ̃ − δ̃ − 1

2

(σ̃/β̃)2 + η̃2

(1− δ̃ + γ̃)2

)
+

1− κ̃

1− δ̃ + γ̃
η̃ǫA,t

vs.

rft = e−κ∆rft−∆ + (1− e−κ∆)(γ − δ − σ2) + ηe−κ∆

∫ t

t−∆

eκ(v−(t−∆))dBv

Note that rt denotes the annual interest rate whereas r̃t denotes the periodic interest rate.
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To summarize, the empirical specification comprises

ln(Ct/Ct−1) = ln β̃ + r̃ft−1 +
1
2

(σ̃/β̃)2 + η̃2

(1− δ̃ + γ̃)2
+

σ̃

β̃(1− δ̃ + γ̃)
ǫK,t +

η̃

1− δ̃ + γ̃
ǫA,t (B.26a)

ln(Yt/Yt−1) = ln β̃ + r̃ft−1 +
1
2

(σ̃/β̃)2 + η̃2

(1− δ̃ + γ̃)2
−

(1− δ̃)κ̃

(1− κ̃)γ̃

(
r̃ft−1 − γ̃ + δ̃ + 1

2

(σ̃/β̃)2 + η̃2

(1− δ̃ + γ̃)2

)

+
σ̃

β̃(1− δ̃ + γ̃)
ǫK,t +

η̃

γ̃
ǫA,t (B.26b)

r̃ft = (1− κ̃)r̃ft−1 + κ̃

(
γ̃ − δ̃ − 1

2

(σ̃/β̃)2 + η̃2

(1− δ̃ + γ̃)2

)
+

1− κ̃

1− δ̃ + γ̃
η̃ǫA,t (B.26c)

or

ln(Ct/Ct−1) = ln β̃ + r̃ft−1 + C0 + εC,t

ln(Yt/Yt−1) = ln β̃ + r̃ft−1 + C0 − C2

(
r̃ft−1 − C1

)
+ εY,t

r̃ft = (1− κ̃)r̃ft−1 + κ̃C1 + εr,t

where

C2 ≡
(1− δ̃)κ̃

(1− κ̃)γ̃
, C1 ≡ γ̃ − δ̃ − C0, C0 ≡

1
2

(σ̃/β̃)2 + η̃2

(1− δ̃ + γ̃)2

and

εC,t =
σ̃

β̃(1− δ̃ + γ̃)
ǫK,t +

η̃

1− δ̃ + γ̃
ǫA,t, (B.27a)

εY,t =
σ̃

β̃(1− δ̃ + γ̃)
ǫK,t +

η̃

γ̃
ǫA,t (B.27b)

εr,t =
1− κ̃

1− δ̃ + γ̃
η̃ǫA,t (B.27c)

We employ the following mapping of structural parameters φ = (κ, γ, η, ρ, δ, σ)⊤

κ ≃ κ̃ = 1− e−∆κ

γ ≃ γ̃ = ∆γ

η ≃ η̃ = ∆η
√

(1− e−2κ∆)/(2κ)

ρ ≃ β̃ = e−∆ρ

δ ≃ δ̃ = 1− e−∆δ

σ ≃ σ̃ = ∆1/2β̃(1− δ̃ + γ̃)σ

in which ∆ = 1/12 for monthly data, ∆ = 1/4 for quarterly data.
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B.7 Residual Covariance Matrix and MEF

From system (B.26) we obtain the fitted residual covariance matrix

Σ̂ ≡




Σ̂CC Σ̂CY Σ̂Cr

Σ̂Y C Σ̂Y Y Σ̂Y r

Σ̂rC Σ̂rY Σ̂rr




where

Σ̂CC =
σ̃2 + (β̃η̃)2

(β̃(1− δ̃ + γ̃))2
, Σ̂CY =

σ̃2

(β̃(1− δ̃ + γ̃))2
+

η̃2

γ̃(1− δ̃ + γ̃)
, Σ̂Cr =

η̃2(1− κ̃)

(1− δ̃ + γ̃)2

Σ̂Y Y =
σ̃2

(β̃(1− δ̃ + γ̃))2
+
η̃2

γ̃2
, Σ̂Y r =

η̃2(1− κ̃)

γ̃(1− δ̃ + γ̃)
, Σ̂rr =

η̃2(1− κ̃)2

(1− δ̃ + γ̃)2

which we may use for better identification of structural model parameters.

Let φ denote the parameter vector of interest and let mt = mt(φ) denote the 3-vector of

martingale increments generated by the model, expressed in terms of data and parameters.

Specifically, we let mt = εt = (εC,t, εY,t, εr,t) in (B.26) be a martingale difference sequence,

mt =




ln(Ct/Ct−1)− r̃ft−1 − (ln β̃ + C0)

ln(Yt/Yt−1)− r̃ft−1 − (ln β̃ + C0) + C2(r̃
f
t−1 − C1)

r̃ft − (1− κ̃)r̃ft−1 − κ̃C1


 (B.28)

The optimal weights are given by

wt = ψ⊤
t (Ψt)

−1

where Ψt is the conditional variance of the vector martingale increment,

Ψt = V art−1(mt) = Et−1(mtm
⊤
t )

and ψt the conditional mean of its parameter derivative

ψt = Et−1(∂mt/∂φ
⊤).

Here, the conditional variance of the vector martingale increment is constant and given by

the residual covariance matrix, Ψt = Σ̂. Using the martingale increments (B.28), we get the

derivatives (∂mt/∂φ
⊤)⊤ with respect to the parameter vector φ = (κ̃, γ̃, η̃, β̃, δ̃, σ̃)⊤,




0 (∂C2/∂κ̃)(r
f
t−1 − C1) r̃ft−1 − C1

−(∂C0/∂γ̃) −(∂C0/∂γ̃) + (∂C2/∂γ̃)r̃
f
t−1 − (∂(C1C2)/∂γ̃) −κ̃(1− (∂C0/∂γ̃))

−(∂C0/∂η̃) −(∂C0/∂η̃) + C2(∂C0/∂η̃) κ̃(∂C0/∂η̃)

−1/β̃ − (∂C0/∂β̃) −1/β̃ − (∂C0/∂β̃) + C2(∂C0/∂β̃) κ̃(∂C0/∂β̃)

−(∂C0/∂δ̃) −(∂C0/∂δ̃) + (∂C2/∂δ̃)r̃
f
t−1 − (∂(C1C2)/∂δ̃) κ̃(1 + (∂C0/∂δ̃))

−(∂C0/∂σ̃) −(∂C0/∂σ̃) + C2(∂C0/∂σ̃) κ̃(∂C0/∂σ̃)
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where

∂C0/∂γ̃ = −
(σ̃/β̃)2 + η̃2

(1− δ̃ + γ̃)3
= −2C0/(1− δ̃ + γ̃),

∂C0/∂η̃ = η̃/(1− δ̃ + γ̃)2,

∂C0/∂β̃ = −(σ̃/β̃)2/(β̃(1− δ̃ + γ̃)2),

∂C0/∂δ̃ =
(σ̃/β̃)2 + η̃2

(1− δ̃ + γ̃)3
= 2C0/(1− δ̃ + γ̃),

∂C0/∂σ̃ = σ̃/(β̃(1− δ̃ + γ̃))2,

and

∂C1/∂γ̃ = 1− (∂C0/∂γ̃)

∂C1/∂δ̃ = −1 − (∂C0/∂δ̃)

and

∂C2/∂κ̃ =
1− δ̃

(1− κ̃)2γ̃
= C2/(κ̃(1− κ̃))

∂C2/∂γ̃ = −(1− δ̃)κ̃/((1− κ̃)γ̃2) = −C2/γ̃

∂C2/∂δ̃ = −κ̃/((1− κ̃)γ̃)

and

∂(C1C2)/∂γ̃ = (∂C1/∂γ̃)C2 + (∂C2/∂γ̃)C1 = C2 − (∂C0/∂γ̃)C2 − C1C2/γ̃

∂(C1C2)/∂δ̃ = (∂C1/∂δ̃)C2 + (∂C2/∂δ̃)C1

and with respect to the parameter vector φ = (κ, γ, η, ρ, δ, σ)⊤,




−(∂C0/∂η̃)(∂η̃/∂κ) φ12 ∆e−∆κ(r̃ft−1 − C1) + κ̃(∂C0/∂η̃)(∂η̃/∂κ)

−(∂C0/∂γ̃)∆− (∂C0/∂σ̃)∆
3/2β̃σ φ22 −∆κ̃(1− (∂C0/∂γ̃)− (∂C0/∂σ̃)∆

1/2β̃σ)
−(∂C0/∂η̃)(η̃/η) φ32 κ̃(∂C0/∂η̃)(η̃/η)

∆ ∆ 0

−((∂C0/∂δ̃)− (∂C0/∂σ̃)∆
1/2β̃)∆e−∆δ φ52 κ̃∆e−∆δ(1 + (∂C0/∂δ̃))− κ̃(∂C0/∂σ̃)∆

1/2β̃σ
−(∂C0/∂σ̃)(σ̃/σ) φ62 κ̃(∂C0/∂σ̃)(σ̃/σ)




where

φ12 ≡ −(∂C0/∂η̃)(∂η̃/∂κ)+(∂C2/∂κ̃)∆e
−∆κrft−1+(C2(∂C0/∂η̃)(∂η̃/∂κ)−C1(∂C2/∂κ̃))∆e

−∆κ,

φ22 ≡ −(∂C0/∂γ̃∆+ ∂C0/∂σ̃∆
1/2β̃σ) + (∂C2/∂γ̃)∆r̃

f
t−1 − (∂(C1C2)/∂γ),

φ32 ≡ −(∂C0/∂η̃)(η̃/η) + C2(∂C0/∂η̃)(η̃/η),

φ52 ≡ −(∂C0/∂δ̃)∆e
−∆δ + (∂C2/∂δ̃)∆e

−∆δ r̃ft−1 − (∂(C1C2)/∂δ),
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φ62 ≡ −(∂C0/∂σ̃)(σ̃/σ) + C2(∂C0/∂σ̃)(σ̃/σ),

and

∂η̃/∂κ = 1
2
η̃
(
2∆e−2κ∆/(1− e−2κ∆)− 1/κ

)
,

and

∂(C1C2)/∂γ = (∂C1/∂γ)C2+(∂C2/∂γ)C1 = ∆C2−(∂C0/∂γ̃)C2−(∂C0/∂σ̃)∆
3/2β̃σC2−C1C2/γ̃∆,

∂(C1C2)/∂δ = (−1− (∂C0/∂δ̃) + (∂C0/∂σ̃)∆
1/2β̃σ)∆e−∆δ

C2 + (∂C2/∂δ̃)∆e
−∆δ

C1.

B.8 Calibration of model parameters - periodic rates

Suppose that we want to parameterize the Ornstein-Uhlenbeck process and the first-order

autoregressive process (with the discrete time process being at periodic rates)

dxt = κ(γ − xt)dt+ ηdBt, x0 given and x̃t+1 = C0 + C1x̃t + C2ǫt+1, (B.29)

where x̃0 = ∆x0, where ∆ = 1/12 for monthly and ∆ = 1/4 for quarterly observations, Bt a

standard Brownian motion, 0 < C1 < 1 and ǫt ∼ N (0, 1).5 The solutions are

xt = e−κtx0 + (1− e−κt)γ + e−κtη

∫ t

0

eκvdBv and x̃t = C
t
1x̃0 + C

t
1

t∑

i=1

C
−i
1 (C0 + C2ǫi)

Let us calibrate Ci, i = 0, 1, 2, given a parametric value for κ, γ and η at quarterly frequency,

such that the expected value E0(∆x∆) = E0(x̃1), the variance V ar0(∆x∆) = V ar0(x̃1), and

the mean of the asymptotic distribution E(∆x) = E(x̃) coincide. It it straightforward to show

that E0(∆x∆) = ∆e−∆κx0+∆(1− e−∆κ)γ and E0(x̃1) = C1x̃0+C0. Moreover, E(∆x) = ∆γ

and E(x̃) = C0/(1− C1). This gives C0 = ∆γ(1− C1) in which C1 is pinned down by

∆e−∆κx0 +∆γ −∆γe−∆κ = C1∆x0 +∆γ −∆γC1

⇔ e−∆κ(x0 − γ) = C1(x0 − γ)

⇔ C1 = e−∆κ

From the Itô isometry we get

V ar0(∆x∆) = ∆2e−2κ∆η2
∫ ∆

0

e2κvdv = ∆2 η
2

2κ
(1− e−2κ∆)

whereas

V ar0(x̃1) = C
2
2V ar0(ǫ1) = C

2
2

5Note that (1 + rt)
∆ = 1 + r̃t or ∆ ln(1 + rt) = ln(1 + r̃t) and thus ∆rt ≈ r̃t.
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Equating terms implies:

C2 = ∆η
√

(1− e−2κ∆)/(2κ)

As an example, our DGP with ∆ = 1/4, κ = 0.2, γ = 0.1 and η = 0.01 corresponds to the

discrete-time process with parameterization C0 ≈ 0.001, C1 ≈ 0.951, and C2 ≈ 0.001, or

dxt = 0.2(0.1− xt)dt+ 0.01dBt ≃ x̃t+1 = 0.001 + 0.951x̃t + 0.001ǫt+1

Observe that B∆ − B0 ∼ N (0,∆) so we may use ǫt ≡ ∆−1/2(Bt − Bt−∆) ∼ N (0, 1) in

order to match the size of the realized shocks. Economically, x̃t now matches the Vasicek

interest rate dynamics of quarterly interest rates observed at the quarterly frequency,

x̃t+1 − x̃t = κ̃(γ̃ − x̃t) + η̃ǫt+1, x̃0 = ∆x0

where

γ̃ ≡ ∆γ, κ̃ ≡ 1− e−∆κ, η̃ ≡ ∆η
√
(1− e−2κ∆)/(2κ).

B.9 Calibration of model parameters - stochastic depreciation

Next we want to relate the dynamics of the discrete-time resource constraint

ln(Kt+1/Kt) = ln(1 + ν) +
1

1− δ̃ + γ̃
(r̃t − γ̃) +

σ̃

1 + ν
ǫK,t+1

to the corresponding continuous-time formulation

ln(Kt+∆/Kt) =

∫ t+∆

t

rsds− (δ + ρ+ 1
2
σ2)∆ + σ(Zt+∆ − Zt),

where ǫK,t+1 = ∆−1/2(Zt+∆−Zt) ∼ N (0, 1) so in order to get the same conditional moments

σ̃

1 + ν
∆−1/2 = σ,

−(δ − γ + ρ+ 1
2
σ2)∆ = ln β̃ + ln(1− δ̃ + γ̃).

It can be simplified to (γ − δ − 1
2
σ2)∆ = ln(1 + γ̃ − δ̃) which corresponds to our definitions.

B.10 Asset pricing

From (B.25a) we obtain Et(exp (− ln(Ct+1/Ct))) as

Et

(
exp

(
−

[
ln(1 + ν) +

1− κ̃

1− δ̃ + γ̃
(r̃t − γ̃) +

σ̃

1 + ν
ǫK,t+1 +

η̃

1− δ̃ + γ̃
ǫA,t+1

]))

= exp

(
− ln(1 + ν)−

1− κ̃

1− δ̃ + γ̃
(r̃t − γ̃) + 1

2

σ̃2

(1 + ν)2
+ 1

2

η̃2

(1− δ̃ + γ̃)2

)

= β̃−1(1− δ̃ + γ̃)−1 exp

(
−

1− κ̃

1− δ̃ + γ̃
(r̃t − γ̃) +

1

2

(σ̃/β̃)2 + η̃2

(1− δ̃ + γ̃)2

)
.
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Observe that from (B.16a) the one-period risk-free rate of some bond, rft , which is determined

at the end of period t for the following period t+ 1 must satisfy

1 + r̃ft =
(
β̃Et[exp (− ln(Ct+1/Ct))]

)−1

= (1− δ̃ + γ̃) exp

(
1− κ̃

1− δ̃ + γ̃
(r̃t − γ̃)− 1

2

(σ̃/β̃)2 + η̃2

(1− δ̃ + γ̃)2

)

and so

r̃ft ≈ γ̃ − δ̃ +
1− κ̃

1− δ̃ + γ̃
(r̃t − γ̃)− 1

2

(σ̃/β̃)2 + η̃2

(1− δ̃ + γ̃)2
(B.30)

and the expected risk premium over net capital rewards is 1
2
((σ̃/β̃)2 + η̃2)/(1− δ̃ + γ̃)2.

C MEF extensions, and MEF with five conditional mo-

ment restrictions

C.1 AK-Vasicek-RS model

In the case of the AK-Vasicek model with regime switching (cf. Section 3.3.2), the system

of equilibrium dynamics reads6

d lnCt =
(
rt − ρ− δ − 1

2
σ2
)
dt+ σdZt, (C.1a)

d lnYt =
(
κγ/rt −

1
2
(ηt/rt)

2 + rt − κ− ρ− δ − 1
2
σ2
)
dt+ ηt/rtdBt + σdZt, (C.1b)

drt = κ(γ − rt)dt+ ηtdBt, (C.1c)

dηt = (ηl − ηh)dq1,t + (ηh − ηl)dq2,t. (C.1d)

Using system (C.1) and the equilibrium asset-pricing condition (14), we obtain

ln(Ct/Ct−∆)−

∫ t

t−∆

rfvdv = −
(
ρ− 1

2
σ2
)
∆+ εC,t, (C.2a)

ln(Yt/Yt−∆)−

∫ t

t−∆

rfvdv = κγ

∫ t

t−∆

1/(rfv + δ + σ2)dv − 1
2

∫ t

t−∆

η2v/(r
f
v + δ + σ2)2dv

−
(
κ+ ρ− 1

2
σ2
)
∆+ εY,t, (C.2b)

rft = e−κ∆rft−∆ + (1− e−κ∆)(γ − δ − σ2) + εr,t, (C.2c)

ηt = ηt−∆ + (ηl − ηh)

∫ t

t−∆

(φ1(ηv)− φ2(ηv))dv + εη,t. (C.2d)

6It can be shown that the analytical solution Ct = ρKt is not affected by the presence of regime switches
such that the relation between the risk-free rate and the rental rate of capital is still given by (14).
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with martingale increments given by

εC,t = σ(Zt − Zt−∆), (C.3a)

εY,t =

∫ t

t−∆

ηv/(r
f
v + δ + σ2)dBv + σ(Zt − Zt−∆), (C.3b)

εr,t = e−κ∆

∫ t

t−∆

ηve
κ(v−(t−∆))dBv, (C.3c)

εη,t = (ηl − ηh)

∫ t

t−∆

(dq1,v − φ1(ηv)dv − dq2,v + φ2(ηv)dv). (C.3d)

We let mt = εt = (εC,t, εY,t, εr,t)
⊤ from (C.3a)-(C.3c), so dimm = 3. Clearly, mt is a

martingale difference sequence, and from system (C.2) we have that in terms of data and

parameters

mt =




ln(Ct/Ct−∆)−
∫ t

t−∆
rfvdv +

(
ρ− 1

2
σ2
)
∆

ln(Yt/Yt−∆)−
∫ t

t−∆
rfvdv +

(
κ+ ρ− 1

2
σ2
)
∆− κγ

∫ t

t−∆
1/(rfv + δ + σ2)dv

+1
2

∫ t

t−∆
η2v/(r

f
v + δ + σ2)2dv

rft − (1− e−κ∆)(γ − δ − σ2)− e−κ∆rft−∆


 ,

(C.4)

where the integrals are approximated by Riemann sums over days between t−∆ and t.

Similarly to the case of latent variables, our procedure is to derive some proxy moments for

estimation, say, m∗
t = E (mt|Ft−∆), given by (46). We may also obtain Ψt,11 = σ2∆, Ψt,22 =

Et−∆(
∫ t

t−∆
η2v/(r

f
v+δ+σ

2)2dv)+σ2∆, Ψt,33 = e−2κ∆Et−∆(
∫ t

t−∆
η2ve

2κ(v−(t−∆))dv), Ψt,12 = σ2∆,

Ψt,13 = 0, and Ψt,23 = Et−∆((
∫ t

t−∆
ηv/(r

f
v +δ+σ

2)dBv)(e
−κ1∆

∫ t

t−∆
ηve

κ1(v−(t−∆))dBv)).We use

Euler approximations for Ψt,22, Ψt,23, and Ψt,33 such that

Ψt =




σ2∆ σ2∆ 0

σ2∆ η2t−∆∆/(r
f
t−∆ + δ + σ2)2 + σ2∆ η2t−∆e

−κ1∆∆/(rft−∆ + δ + σ2)

0 η2t−∆e
−κ∆∆/(rft−∆ + δ + σ2) e−2κ∆∆η2t−∆


 , (C.5)

where in the estimation we simply replace ηt by its proxy η∗t . Note that this is time-varying,

i.e., MEF is strictly more efficient than GMM, and consistency of the parameter estimates

is not affected since the approximations only enter the weights.

Using moments m∗
t given by (46), we get the derivatives (∂m∗

t /∂φ
⊤)⊤ with respect to the
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parameter vector φ = (κ, γ, ηl, ηh, φlh, φhl, ρ, δ, σ)
⊤




0 ∆− γ
∫ t

t−∆
1/(rfv + δ + σ2)dv

−∆e−κ∆(γ − δ − σ2)

+∆e−κ∆rft−∆

0 −κ
∫ t

t−∆
1/(rfv + δ + σ2)dv −(1− e−κ∆)

0 0 0
0 0 0
0 0 0
0 0 0
∆ ∆ 0

0
κγ
∫ t

t−∆
1/(rfv + δ + σ2)2dv

−E
(∫ t

t−∆
η2v/(r

f
v + δ + σ2)3dv|Ft−∆

) 1− e−κ∆

−σ∆ E




−σ∆

+2σκγ
∫ t

t−∆
1/(rfv + δ + σ2)2dv

−2σ
∫ t

t−∆
η2v/(r

f
v + δ + σ2)3dv

∣∣∣∣∣∣
Ft−∆


 2σ(1− e−κ∆)




.

(C.6)

We also use an Euler approximation for the unknown integrals, such that ψ⊤
t reads




0 ∆− γ∆/(rft−∆ + δ + σ2)
−∆e−κ∆(γ − δ − σ2)

+∆e−κ∆rft−∆

0 −κ∆/(rft−∆ + δ + σ2) −(1− e−κ∆)
0 0 0
0 0 0
0 0 0
0 0 0
∆ ∆ 0

0
κγ∆/(rft−∆ + δ + σ2)2

−(η∗t−∆)
2∆/(rfv + δ + σ2)3

1− e−κ∆

−σ∆
−σ∆+ 2σκγ∆/(rft−∆ + δ + σ2)2

−2σ∆(η∗t−∆)
2/(rft−∆ + δ + σ2)3

2σ(1− e−κ∆)




. (C.7)

This completes the construction of the estimating function MT =
∑

t ψ
⊤
t (Ψt)

−1m∗
t .
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C.2 AK-Vasicek-SV model

In the case of the AK-Vasicek model with stochastic volatility (cf. Section 3.3.3), the system

of equilibrium dynamics reads7

d lnCt =
(
rt − ρ− δ − 1

2
σ2
)
dt+ σdZt, (C.8a)

d lnYt =
(
κ1γ1/rt −

1
2
(ηt/rt)

2 + rt − κ1 − ρ− δ − 1
2
σ2
)
dt+ ηt/rtdBt + σdZt, (C.8b)

drt = κ1(γ1 − rt)dt+ ηtdBt, (C.8c)

d log(η2t ) = κ2(γ2 − log(η2t ))dt+ ξdWt. (C.8d)

Using system (C.8) and the equilibrium asset-pricing condition (14), we obtain

ln(Ct/Ct−∆)−

∫ t

t−∆

rfvdv = −
(
ρ− 1

2
σ2
)
∆+ εC,t, (C.9a)

ln(Yt/Yt−∆)−

∫ t

t−∆

rfvdv = κ1γ1

∫ t

t−∆

1/(rfv + δ + σ2)dv − 1
2

∫ t

t−∆

η2v/(r
f
v + δ + σ2)2dv

−
(
κ1 + ρ− 1

2
σ2
)
∆+ εY,t, (C.9b)

rft = e−κ1∆rft−∆ + (1− e−κ1∆)(γ1 − δ − σ2) + εr,t, (C.9c)

log(η2t ) = e−κ2∆ log(η2t−∆) + (1− e−κ2∆)γ2 + εη,t, (C.9d)

with martingale increments given by

εC,t = σ(Zt − Zt−∆), (C.10a)

εY,t =

∫ t

t−∆

ηv/(r
f
v + δ + σ2)dBv + σ(Zt − Zt−∆), (C.10b)

εr,t = e−κ1∆

∫ t

t−∆

ηve
κ1(v−(t−∆))dBv, (C.10c)

εη,t = e−κ2∆

∫ t

t−∆

ξeκ2(v−(t−∆))dWv. (C.10d)

We let mt = εt = (εC,t, εY,t, εr,t, εη,t)
⊤ from (C.10a)-(C.10d), i.e., using four moments instead

of three. Clearly, mt is a martingale difference sequence, and from system (C.9) we have

that in terms of data and parameters

mt =




ln(Ct/Ct−∆)−
∫ t

t−∆
rfvdv +

(
ρ− 1

2
σ2
)
∆

ln(Yt/Yt−∆)−
∫ t

t−∆
rfvdv +

(
κ1 + ρ− 1

2
σ2
)
∆− κ1γ1

∫ t

t−∆
1/(rfv + δ + σ2)dv

+1
2

∫ t

t−∆
η2v/(r

f
v + δ + σ2)2dv

rft − (1− e−κ1∆)(γ1 − δ − σ2)− e−κ1∆rft−∆

log(η2t )− (1− e−κ2∆)γ2 − e−κ2∆ log(η2t−∆)



,

(C.11)

7It can be shown that the analytical solution Ct = ρKt is not affected by the presence of stochastic
volatility such that the relation between the risk-free rate and the rental rate of capital is still given by (14).
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where the integrals are approximated by Riemann sums over days between t−∆ and t.

Similarly to the case of latent interest rates, our procedure is to derive moments for

estimation, say, m∗
t = E (mt|Ft−∆), given by (48). We may also obtain Ψt,11 = σ2∆, Ψt,22 =

Et−∆(
∫ t

t−∆
η2v/(r

f
v + δ + σ2)2dv) + σ2∆, Ψt,33 = e−2κ1∆Et−∆(

∫ t

t−∆
η2ve

2κ1(v−(t−∆)))dv, Ψt,44 =

ξ2(1 − e−2κ2∆)/(2κ2), Ψt,12 = σ2∆, Ψt,13 = 0, Ψt,14 = 0, Ψt,23 = Et−∆((
∫ t

t−∆
ηv/(r

f
v + δ +

σ2)dBv)(e
−κ1∆

∫ t

t−∆
ηve

κ1(v−(t−∆))dBv)), Ψ24 = 0, and Ψ34 = 0. We use Euler approximations

for the unknown integrals Ψt,22, Ψt,23 and Ψt,33, such that

Ψt =




σ2∆ σ2∆ 0 0

σ2∆ η2t−∆∆/(r
f
t−∆ + δ + σ2)2 + σ2∆ η2t−∆e

−κ1∆∆/(rft−∆ + δ + σ2) 0

0 η2t−∆e
−κ1∆∆/(rft−∆ + δ + σ2) e−2κ1∆∆η2t−∆ 0

0 0 0 Ψt,44


 ,

(C.12)

where in the estimation we simply replace ηt by its proxy η∗t . Again, this is time-varying,

and MEF strictly more efficient than GMM.

Using moments mt given by (C.11), we get the derivatives (∂mt/∂φ
⊤)⊤ with respect to

the parameter vector φ = (κ1, γ1, κ2, γ2, ξ, ρ, δ, σ)
⊤. We also use an Euler approximation for

the unknown integrals, such that ψ⊤
t reads




0 ∆− γ1∆/(r
f
t−∆ + δ + σ2)

−∆e−κ1∆(γ1 − δ − σ2)

+∆e−κ1∆rft−∆

0

0 −κ1∆/(r
f
t−∆ + δ + σ2)dv −(1 − e−κ1∆) 0

0 0 0
−∆e−κ2∆γ2
+∆e−κ2∆2 log(η∗t−∆)

0 0 0 −(1− e−κ2∆)
0 0 0 0
∆ ∆ 0 0

0
κ1γ1∆/(r

f
t−∆ + δ + σ2)2

−(η∗t−∆)
2∆/(rft−∆ + δ + σ2)3

1− e−κ1∆ 0

−σ∆
−σ∆+ 2σκ1γ1∆/(r

f
t−∆ + δ + σ2)2

−2σ(η∗t−∆)
2∆/(rft−∆ + δ + σ2)3

2σ(1− e−κ1∆) 0




.

(C.13)

This completes the construction of the estimating function MT =
∑

t ψ
⊤
t (Ψt)

−1m∗
t .
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C.3 MEF with five conditional moment restrictions

The 5-vector mt = (εC,t, εY,t, εr,t, ε
2
C,t − σ2∆, ε2r,t − η2(1 − e−2κ∆)/(2κ)) based on the error

terms from (16) is clearly a martingale difference, given in terms of data and parameters as

m
(5)
t =




ln(Ct/Ct−∆)−
∫ t

t−∆
rfvdv +

(
ρ− 1

2
σ2
)
∆

ln(Yt/Yt−∆)−
∫ t

t−∆
rfvdv +

(
κ+ ρ− 1

2
σ2
)
∆− κγ

∫ t

t−∆
1/(rfv + δ + σ2)dv

+1
2
η2
∫ t

t−∆
1/(rfv + δ + σ2)2dv

rft − (1− e−κ∆)(γ − δ − σ2)− e−κ∆rft−∆(
ln(Ct/Ct−∆)−

∫ t

t−∆
rfvdv +

(
ρ− 1

2
σ2
)
∆
)2

− σ2∆
(
rft − (1− e−κ∆)(γ − δ − σ2)− e−κ∆rft−∆

)2
− η2(1− e−2κ∆)/(2κ)




or, by using the definition of three moment increments m
(3)
t from (21),

m
(5)
t =




m
(3)
t(

ln(Ct/Ct−∆)−
∫ t

t−∆
rfvdv +

(
ρ− 1

2
σ2
)
∆
)2

− σ2∆
(
rft − (1− e−κ∆)(γ − δ − σ2)− e−κ∆rft−∆

)2
− η2(1− e−2κ∆)/(2κ)


 (C.14)

which is equivalent to considering

m
(5)
t =




σ(Zt − Zt−∆)∫ t

t−∆
η/(rfv + δ + σ2)dBv + σ(Zt − Zt−∆)

ηe−κ∆
∫ t

t−∆
eκ(v−(t−∆))dBv

σ2(Zt − Zt−∆)
2 − σ2∆

η2e−2κ∆
(∫ t

t−∆
eκ(v−(t−∆))dBv

)2
− η2(1− e−2κ∆)/(2κ)




or

m
(5)
t =




m
(3)
t

σ2(Zt − Zt−∆)
2 − σ2∆

η2e−2κ∆
(∫ t

t−∆
eκ(v−(t−∆))dBv

)2
− η2(1− e−2κ∆)/(2κ)


 . (C.15)

To construct the MEF (27), we need the weights wt in (29), which depend on the condi-

tional mean of the parameter derivatives, ψt, and the conditional variance, Ψt, ofmt. We have

the conditional variances Ψ
(5)
t,11 = σ2∆, Ψ

(5)
t,22 = η2Et−∆(

∫ t

t−∆
1/(rfv + δ + σ2)2dv) + σ2∆, and

Ψ
(5)
t,33 = η2(1−e−2κ∆)/(2κ), Ψ

(5)
t,44 = 2σ4∆2, and Ψ

(5)
t,55 = η4e−4κ∆Et−∆

(
(
∫ t

t−∆
eκ(v−(t−∆))dBv)

4
)
−

1
4
η4(1 − e−2κ∆)2/κ2. Similarly, the conditional covariances are Ψ

(5)
t,12 = σ2∆, Ψ

(5)
t,13 = 0,

Ψ
(5)
t,14 = 0, Ψ

(5)
t,15 = 0, Ψ

(5)
t,23 = η2e−κ∆Et−∆

(
(
∫ t

t−∆
1/(rfv + δ + σ2)dBv)(

∫ t

t−∆
eκ(v−(t−∆))dBv)

)
,

Ψ
(5)
t,24 = 0, Ψ

(5)
t,25 = η3e−2κ∆Et−∆

(
(
∫ t

t−∆
1/(rfv + δ + σ2)dBv)(

∫ t

t−∆
eκ(v−(t−∆))dBv)

2
)
, Ψ

(5)
t,35 =

η3e−3κ∆Et−∆

(
(
∫ t

t−∆
eκ(v−(t−∆))dBv)

3
)
, Ψ

(5)
t,34 = Ψt,45 = 0. We use Euler approximations for
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Ψ
(5)
t,22, Ψ

(5)
t,55, Ψ

(5)
t,23, Ψ

(5)
t,25 and Ψ

(5)
t,35,

Ψ
(5)
t =




σ2∆ σ2∆ 0 0 0

σ2∆ σ2∆+ η2∆/(rft−∆ + δ + σ2)2 η2e−κ∆∆/(rft−∆ + δ + σ2) 0 0

0 η2e−κ∆∆/(rft−∆ + δ + σ2) 1
2
η2(1− e−2κ∆)/κ 0 0

0 0 0 2σ4∆2 0

0 0 0 0 Ψ
(5)′

t,55




where Ψ
(5)′

t,55 = 3η4e−4κ∆∆2 − 1
4
η4(1− e−2κ∆)2/κ2, or using Ψ

(3)
t from (41),

Ψ
(5)
t =




Ψ
(3)
t 03×2

02×3
2σ4∆2 0

0 3η4e−4κ∆∆2 − 1
4
η4(1− e−2κ∆)2/κ2


 . (C.16)

Again, Ψ
(5)
t is time-varying, i.e., this is a conditionally heteroskedastic case, and optimal

MEF is strictly more efficient than GMM. Consistency and the expression for the asymptotic

variance are unaffected by our approximations because they enter only in the weights (29).

Using martingale increments (C.14), we get the derivatives (∂m
(5)
t (φ)/∂φ⊤)⊤ with respect to

the parameter vector φ = (κ, γ, η, ρ, δ, σ)⊤, such that (ψ
(5)
t )⊤ reads




(ψ
(3)
t )⊤

0
0
0
0
0

−2σ∆

1
2
η2(1− e−2κ∆)/κ2 − η2∆e−2κ∆/κ

0
−η(1− e−2κ∆)/κ

0
0
0



, (C.17)

with (ψ
(3)
t )⊤ from (44), and where we use the fact that

ψ
(5)
t,44 = 2Et−∆

(
ln(Ct/Ct−∆)−

∫ t

t−∆

rfvdv + (ρ− 1
2
σ2)∆

)
∆ = 0.

This completes the construction of the martingale estimating function for five conditional

moment restrictions M
(5)
T =

∑
t(ψ

(5)
t )⊤(Ψ

(5)
t )−1m

(5)
t .

D Additional Simulation Evidence

D.1 Simulation results: MEF extensions

In this section we present simulation results for two possible MEF extensions, namely, ac-

commodating missing data points in the mixed-frequency approach (MF-MEF), and latent

variables using the simulation-based approach (SMEF). Table D1 provides the results for

the simulation study of the AK-Vasicek model for the case of truly missing data. In the first
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Table D1: Simulation Study – Latent Short Rate and Mixed Frequency
The table reports output of a simulation study of the accuracy of the structural model parameters estimated
using the latent short rate and mixed-frequency MEF approaches for the AK-Vasicek model, SMEF (Latent
Short Rate) and MF-MEF, respectively. For 1,000 replications, we generate 25 years of data from the
underlying data generating process (DGP) and apply our estimation strategy. We show the median estimate,
and provide the interquartile range below it. For completeness we include the MEF estimates from Table 1.

Parameter Estimates from Simulation Study –
SMEF (Latent Short Rate) and MF-MEF

Monthly Data Quarterly Data Mixed Frequency
DGP MEF SMEF MEF SMEF MF-MEF

κ 0.2 0.354
0.284

0.355
0.280

0.353
0.305

0.363
0.290

0.360
0.290

γ 0.1 0.099
0.013

0.099
0.012

0.099
0.013

0.107
0.020

0.099
0.013

η 0.01 0.010
0.001

0.010
0.001

0.010
0.001

0.010
0.002

0.010
0.001

ρ 0.03 0.030
0.006

0.030
0.002

0.030
0.006

0.032
0.005

0.030
0.006

δ 0.05 0.050
0.002

0.051
0.005

0.050
0.003

0.055
0.013

0.050
0.002

σ 0.02 0.023
0.005

0.021
0.003

0.025
0.010

0.021
0.006

0.022
0.005

column we list the parameter values as they are used in the data generating process (DGP),

in column 3 the SMEF estimates obtained on simulated monthly data, in column 5 the

SMEF estimates for the simulated quarterly data, and in column 6 the MF-MEF estimates

for the mixed-frequency data. The interest rate data are missing in the SMEF cases, and

two of every three monthly output observations are missing in the MF-MEF case. For com-

parison, we also replicate the complete data MEF results from Table 1 in columns 2 and 4,

respectively, using monthly and quarterly data. For the case of observed data (consumption,

output and interest rate), but with latent volatility, Table D2 provides the results for regime

switching (Panel A) and stochastic volatility (Panel B). As before, we provide the median

estimate of each parameter, and below the interquartile range of the 1,000 estimates.

For the latent variable extension, case (i) from Section 3.3, we compare SMEF (columns

3 and 5 of Table 2) with MEF estimates (columns 2 and 4 of Table D1). We find that the

latent variable case is as good as the observed short rate process. At both the monthly

and the quarterly observation frequency, the point estimates and interquartile ranges are

estimated remarkably close to the DGP values and are comparable with the MEF figures,

with slightly smaller interquartile ranges in the SMEF approach for ρ and σ. This suggests

that the model-consistent interest rate proxy r∗t = ρYt/Ct is particularly fortunate in the

AK-Vasicek model. Of course, these findings hold true only if the data were simulated from

the correct model. This fact allows us to run model-specification checks on the empirical data

at hand. The simulated short rate process can actually be compared with some observed

proxies (see also the discussion in Section 5.3).
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Table D2: Simulation Study – Regime Switching and Stochastic Volatility
The table reports output of a simulation study of the accuracy of the structural model parameters estimated
using the MEF approaches for the AK-Vasicek model with regime switching for the interest rate volatility
(Panel A) and with latent stochastic volatility (Panel B). We use three strategies in the latter case for
identifying ξ. First, we estimate it along with the other parameters (“MEF”). Second we fix it at the
known value (“Fix ξ”). Third, we estimate it separately by looking at the residuals from an autoregressive
process for the proxied volatility series and plug this value into the MEF procedure (“Proxy ξ”). For 1,000
replications, we generate 25 years of data from the underlying data generating process (DGP) and apply our
estimation strategy. We show the median estimate, and provide the interquartile range below it.

Panel A: Simulation Study – Regime Switching (ηl and ηh)
MEF (Latent Short Rate Volatility)

Monthly Quarterly Monthly Quarterly
DGP MEF MEF DGP MEF MEF

κ 0.2 0.045
0.090

0.032
0.128

0.5 0.542
0.388

0.587
0.423

γ 0.1 0.081
0.085

0.094
0.092

1 1.002
0.086

1.009
0.134

ηl 0.005 0.019
0.011

0.016
0.013

0.1 0.113
0.037

0.118
0.097

ηh 0.02 0.022
0.009

0.023
0.019

0.25 0.240
0.064

0.225
0.106

φlh 1.1 1.075
0.533

1.034
1.058

1 1.045
0.967

1.327
9.023

φhl 1.5 1.403
0.756

1.176
1.191

5 4.304
3.471

3.567
47.847

ρ 0.03 0.030
0.006

0.031
0.007

0.03 0.030
0.006

0.029
0.008

δ 0.05 0.080
0.104

0.091
0.176

0.05 0.049
0.002

0.050
0.033

σ 0.02 0.021
0.009

0.021
0.029

0.02 0.023
0.013

0.027
0.062

Panel B: Simulation Study – Stochastic Volatility (Latent ηt)
MEF (Latent Short Rate Volatility)

Monthly Quarterly
DGP MEF Fix ξ Proxy ξ MEF Fix ξ Proxy ξ

κ1 0.2 0.243
0.201

0.250
0.215

0.251
0.208

0.244
0.253

0.268
0.285

0.269
0.289

γ1 0.1 0.099
0.079

0.102
0.080

0.101
0.080

0.103
0.095

0.113
0.136

0.113
0.134

κ2 2 2.065
1.084

2.173
0.706

2.180
0.712

0.267
1.588

1.299
1.631

1.310
1.647

γ2 -10 −10.033
0.413

−10.034
0.358

−10.030
0.357

−9.891
3.469

−9.887
0.495

−9.892
0.487

ξ 2.5 4.726
156.150

2.500 2.565
0.165

326.666
6091.628

2.500 1.968
0.222

ρ 0.03 0.031
0.006

0.031
0.006

0.031
0.006

0.031
0.007

0.032
0.007

0.032
0.007

δ 0.05 0.047
0.073

0.050
0.077

0.050
0.075

0.050
0.089

0.059
0.119

0.058
0.110

σ 0.02 0.022
0.027

0.022
0.032

0.022
0.035

0.025
0.052

0.028
0.060

0.028
0.059
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For the latent variable extension, case (ii), we find that the identifiability of the structural

parameters largely depends on the calibration of the DGP values (cf. Table D2, Panel A).

This is intuitive because the embedded filter may have problems identifying the transition

probabilities and/or the size of the two volatility regimes if the difference between them is

negligible. One DGP in column 1 is taken roughly in line with the interest rate data, while

another DGP in column 4 illustrates that performance improves if the difference between the

two regimes is more pronounced. The regime-switching model also has strong implications

for the estimate (and bias) of the mean-reversion parameter κ. The point estimates and

interquartile ranges for parameters γ, ρ and σ are estimated remarkably close to DGP values.

The upward bias in δ in columns 2 and 3 may be explained by a weak identification of ηl.

For the case where the two regimes are well identified in columns 5 and 6, all parameter

estimates are close to their DGP values. Overall, sampling data at a higher frequency works

better.

For the latent variable extension, case (iii), we find that the parameter ξ, the variance of

the stochastic volatility process, is weakly identified (cf. Table D2, Panel B). This explains

the large interquartile range for the SMEF estimates (columns 2 and 5). Hence, in columns

3 and 7 we fix ξ at its DGP value. We then compare SMEF estimates (columns 4 and 7)

with the benchmark estimates when ξ is known. We find that estimating ξ at the outset

and using this value as a proxy for ξ works remarkably well. At both the monthly and the

quarterly observation frequency, the point estimates and interquartile ranges are estimated

remarkably close to DGP values and are comparable with the benchmark figures.

For the extension to mixed-frequency data, case (iv), we compare MF-MEF (column 6)

with MEF estimates (columns 2 and 4). As one would expect, given the correct specification,

for the case when output is replaced by model consistent predictions at intra-quarter periods

the point estimates are remarkably close to the monthly estimates. Comparing the MF-MEF

results to MEF, where consumption and output is observed at the quarterly frequency, we

find that we gain better identification in σ, reflected by the smaller interquartile range.

In Figure D1 we provide the histograms of the 1,000 estimates that we obtain for the

parameters using both the SMEF for monthly data and the MF-MEF approaches (Table D1).

Comparing the histograms of SMEF to monthly MEF in Figure 1 (both Panel A) illustrates

that ρ and σ are better identified in SMEF, which also is reflected by smaller interquartile

ranges above, while the histogram is slightly more narrow for δ in the MEF approach.

Similarly, comparing the histograms of MF-MEF (Panel B) to monthly and quarterly MEF,

respectively, in Figure 1 (Panels A and B) shows that there is a small efficiency loss with

respect to monthly data, but better identification of parameters is obtained relative to the

results when estimates are obtained solely from quarterly data.
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Figure D1: Simulation Study – Latent Short Rate and Mixed Frequency
The figure reports output of a simulation study of the accuracy of the structural model parameters estimated
using simulated MEF and mixed-frequency approaches for the AK-Vasicek model, SMEF, and MF-MEF,
respectively. For 1,000 replications, we generate 25 years of data from the underlying data generating process
(DGP) and apply our estimation strategy. We plot the distribution of the estimates, in Panel A for the SMEF
(Latent Short Rate) case based on monthly data and in Panel B for the MF-MEF approach.

(A) SMEF (Latent Short Rate) for Monthly Data
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(B) MF-MEF
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Overall, our MEF extensions work and are potentially more important for the case when

we apply the methods to empirical data by the same reasons that motivated our extensions.

D.2 Robustness: Time invariance, high-frequency data, and the

comparison to discrete time

In this section we present robustness simulation results which are particularly relevant for

the estimation of continuous-time models. We want to provide answers to the following

three questions: (i) Are the estimates time invariant? In theory, the continuous-time model

is time invariant. However, different continuous-time processes may look identical if sampled

at discrete points, which sometimes is referred to as the aliasing problem. This phenomenon

may prevent unique identification of the parameters of the continuous-time stochastic process

from equidistant discrete-time observations. Moreover, any temporal aggregation of the data

may distort our parameter estimates. For these reasons, it seems important to examine to

which extent our parameter estimates change with the observation frequency. (ii) Do the

high-frequency data matter? So far, we only exploit the high-frequency property of the

interest rate in the approximation of the integrals as Riemann sums. Hence, we want to

examine to which extent the use of daily observations versus only considering the end-of-

period figure helps to identify the parameters in our analysis. (iii) What happens if the true

DGP is the continuous-time model and the researcher specifies a discrete-time model, then

estimates that system to obtain parameter estimates. Is this problematic?

In order to examine (i), to which extent the parameter estimates change with the sampling

frequency, we simulate monthly and quarterly data respectively, with the same number of

observations for comparison. In Table D3 we compare the usual 25 years of monthly data to

75 years of simulated quarterly data (Panel A). As before, we provide the median estimate of

each parameter, and below the interquartile range of the 1,000 estimates. The results show

that the bias in the κ estimate is much smaller with quarterly data than if the data were

sampled at monthly frequency. Moreover, the interquartile ranges are substantially smaller

with quarterly data for all four estimation methods. This reveals that the time invariance

property translates to all parameters of interest except the mean-reversion parameter κ. This

upward bias, however, seems to diminish if quarterly data were used, provided the number

of observations is sufficiently large (compare also to the results in Table 1).
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Table D3: Robustness Simulations – Time invariance and High-frequency data
The table reports output of two simulation studies of the robustness of our estimation methods. In a first simulation (Panel A) we examine to
which extent the parameter estimates change with the sampling frequency. To this end, we simulate the quarterly data set-up with the same number
of observations as in the monthly set-up. Specifically, we compare the usual 25 years of monthly data to 75 years of quarterly data. In a second
robustness simulation (Panel B), we examine what our results would look like without exploiting the availability of daily interest rates, using instead
only used the end-of-period number. To this end, we simulate the data as usual, but only use the end-of-month and end-of-quarter short rate in our
estimation, rather than the integrals. We show the accuracy of the structural model parameters estimated using OLS, FGLS-SUR-IV, GMM, and
MEF for the AK-Vasicek model with three conditional moment restrictions. For 1,000 replications, we generate the data from the underlying data
generating process (DGP) and apply our estimation strategy. We show the median estimate, and provide the interquartile range below it.

Panel A: Robustness Simulations – Time invariance

Monthly Data Quarterly Data (75 years)
DGP OLS FGLS-SUR-IV GMM MEF OLS FGLS-SUR-IV GMM MEF

κ 0.2 0.349
0.286

0.299
0.134

0.345
0.345

0.354
0.284

0.236
0.116

0.179
0.058

0.246
0.145

0.246
0.120

γ 0.1 0.201
0.036

0.101
0.013

0.100
0.014

0.100
0.013

0.190
0.023

0.101
0.008

0.101
0.009

0.100
0.008

η 0.01 0.083
0.036

0.008
0.004

0.010
0.001

0.010
0.001

0.065
0.019

0.007
0.002

0.010
0.001

0.010
0.001

ρ 0.03 0.080
0.015

0.030
0.006

0.030
0.007

0.030
0.006

0.075
0.009

0.030
0.003

0.030
0.004

0.030
0.003

δ 0.05 0.05 0.05 0.05 0.050
0.002

0.05 0.05 0.05 0.050
0.002

σ 0.02 0.317
0.040

0.000
<0.001

0.027
0.047

0.023
0.005

0.299
0.031

0.000
<0.001

0.018
0.052

0.022
0.006

Panel B: Robustness Simulations – Daily vs. Monthly and Quarterly Short Rate

Monthly Data Quarterly Data
DGP OLS FGLS-SUR-IV GMM MEF OLS FGLS-SUR-IV GMM MEF

κ 0.2 0.188
0.444

0.395
0.260

0.164
0.164

0.356
0.286

0.184
0.444

0.387
0.287

0.144
0.137

0.353
0.305

γ 0.1 0.241
0.205

0.100
0.013

0.099
0.017

0.098
0.012

0.236
0.195

0.100
0.013

0.099
0.018

0.094
0.013

η 0.01 0.077
0.105

0.009
0.004

0.010
0.001

0.010
0.001

0.075
0.102

0.009
0.003

0.010
0.002

0.010
0.001

ρ 0.03 0.104
0.095

0.030
0.006

0.030
0.006

0.030
0.006

0.101
0.091

0.030
0.006

0.031
0.007

0.030
0.006

δ 0.05 0.05 0.05 0.05 0.048
0.002

0.05 0.05 0.05 0.045
0.004

σ 0.02 0.389
0.435

0.000
0.011

0.000
0.038

0.023
0.005

0.383
0.427

0.000
<0.001

0.032
0.057

0.024
0.010
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We also examine (ii), what our results would look like if we did not use the daily availabil-

ity of interest rates, but only the end-of-period number. To this end we simulate the data as

usual, but only use the end-of-month and end-of-quarter short rate in our estimation, rather

than the integrals. This simply neglects all within-period dynamics. In Table D3 we show

the results for monthly data and quarterly data (Panel B). Comparing to the results in Table

1 shows that neglecting within-period dynamics is not innocuous. The general pattern is that

it comes at the cost of increasing inter-quartile ranges and changing parameter estimates. In

particular, the estimate for the mean-reversion parameter κ changes substantially for OLS,

FGLS-SUR-IV, and GMM. Moreover, we get into more severe identification problems for

σ in the regression-based approaches and now also for GMM. In contrast, we observe only

minor efficiency losses for the MEF approach. Here, we still provide some information about

the dynamics of the stochastic process using the deterministic Taylor expansion (43). Table

D4 shows that the use of high-frequency observations may be more important for different

models and/or data. In particular, if the speed of mean reversion κ is high, the daily ap-

proximations of integrals of financial interest rate data are important for identification of

the structural parameters of the macro model, such as the depreciation rate δ. For example,

using DGP values κ = 1 and δ = 0.05, the end-of-quarter approximation of integrals suggests

that δ = 0, and at the same time the high-frequency data approximation yields δ = 0.049.

These patterns suggest that both high-frequency data and/or more information about the

within-period dynamics help identify the parameters of interest.

To examine (iii) we simulate the DGP from the continuous-time system (15) and then

estimate the discrete time system (19). It turns out that while the model is misspecified, at a

first glance, it seems to be a (surprisingly) good approximation and the structural parameters

can be estimated from the simulated data (cf. Table D5). We may directly compare the

results to Table 1. We find that the median MEF point estimates are similar in both

approaches. A second look, however, reveals that the approximation has strong consequences

on the identifiability of structural parameters. As shown by Canova and Sala (2009), many

(linear) DSGE models share identification problems for (a subset of) model parameters.

Figure D2, which shows the elasticity of the objective function to the parameter values for

one draw of the simulated data, suggests that the continuous-time approach, where we use

the nonlinear model, may help the identifiability of structural parameters.8 The objective

function is much steeper around parameter estimates in the continuous-time model (Panel

A), which implies elasticities at several orders of magnitude higher in the continuous-time

8A nonlinear analysis of the discrete-time model requires solving (18) with some nonlinear approximation
scheme. Along those lines, we would arrive at an (implicit) dynamic equilibrium system which no longer
allows the application of our estimation methods. This is in contrast to our continuous-time approach where
an explicit dynamic equilibrium system is obtained using the stochastic calculus.
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Table D4: Robustness Simulations – High-frequency Data for Different DGPs
The table reports output of a simulation study of the accuracy of the structural model parameters estimated
using the MEF approach for the AK-Vasicek model, to illustrate the benefits of high-frequency data. In each
panel we show two types of results. First, estimation where the Riemann sum for the integral is replaced by
the end of month (“EoMth”) and end of quarter value (“EoQrt”). Second, the usual estimation using the
Riemann sum approximation of the integral (“Daily”). For 1,000 replications, we generate 25 years of data
from the underlying data generating process (DGP) and apply our estimation strategy. We show the median
estimate, and provide the interquartile range below it. In Panel A (a) we replicate the results from Tables
1 and D3. In Panel A (b) we report results for a DGP setting with a relatively high value of η, whereas in
Panel B (a) and (b) we report results for relatively high values of both κ and η.

Panel A: Robustness Simulations – Daily vs. Monthly and Quarterly Short Rate (high η)

(a) Monthly Data Quarterly Data (b) Monthly Data Quarterly Data
DGP Daily EoMth Daily EoQrt DGP Daily EoMth Daily EoQrt

κ 0.2 0.354
0.284

0.356
0.286

0.353
0.305

0.353
0.305

0.2 0.228
0.342

0.212
0.328

0.228
0.342

0.189
0.374

γ 0.1 0.099
0.013

0.098
0.012

0.099
0.013

0.094
0.013

0.5 0.521
0.308

0.521
0.707

0.521
0.308

0.589
42.475

η 0.01 0.010
0.001

0.010
0.001

0.010
0.001

0.010
0.001

0.1 0.099
0.009

0.099
0.009

0.099
0.009

0.099
0.021

ρ 0.03 0.030
0.006

0.030
0.006

0.030
0.006

0.030
0.006

0.03 0.031
0.006

0.031
0.006

0.031
0.006

0.032
0.006

δ 0.05 0.050
0.002

0.048
0.002

0.050
0.003

0.045
0.004

0.05 0.043
0.034

0.037
0.028

0.043
0.034

0.028
0.052

σ 0.02 0.023
0.005

0.023
0.005

0.025
0.010

0.024
0.010

0.02 0.022
0.007

0.022
0.007

0.022
0.007

0.020
0.772

Panel B: Robustness Simulations – Daily vs. Monthly and Quarterly Short Rate (high κ and η)

(a) Monthly Data Quarterly Data (b) Monthly Data Quarterly Data
DGP Daily EoMth Daily EoQrt DGP Daily EoMth Daily EoQrt

κ 0.5 0.754
0.434

0.740
0.463

0.754
0.434

0.724
0.552

1 1.129
0.436

1.123
0.443

1.129
0.436

1.162
0.985

γ 0.5 0.538
0.125

0.532
0.122

0.538
0.125

0.541
0.217

0.5 0.498
0.029

0.476
0.032

0.498
0.029

0.452
0.032

η 0.2 0.196
0.019

0.197
0.019

0.196
0.019

0.197
0.042

0.1 0.100
0.007

0.100
0.006

0.100
0.007

0.105
0.018

ρ 0.03 0.031
0.006

0.031
0.006

0.031
0.006

0.032
0.007

0.03 0.031
0.006

0.031
0.006

0.031
0.006

0.031
0.006

δ 0.05 0.048
0.038

0.038
0.042

0.048
0.038

0.011
0.053

0.05 0.049
0.011

0.026
0.013

0.049
0.011

0.000
0.001

σ 0.02 0.022
0.007

0.022
0.010

0.022
0.007

0.020
0.355

0.02 0.022
0.003

0.022
0.004

0.022
0.003

0.001
0.018

35



approach (Panel B). Moreover, within-period dynamics or the mixed-frequency property

of macro and financial data can no longer be exploited (as discussed above). Hence, in

models where the within-period dynamics are economically relevant and/or the nonlinearities

are economically important, this will probably also show up in forecasting performance.

Ultimately, it will be an empirical question whether these features matter in more elaborate

models.

Our conclusion from the robustness analysis is that if parameters are well identified, a

(log-linear) approximation of a more elaborate continuous-time model where no analytical

solution is available seems a promising route and may be the best-practice approach. While

it easily allows using mixed-frequency data, it keeps efficiency losses when estimating the

model at a minimum. We leave further analysis of this for future research.
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Table D5: Simulation Study – Monthly and Quarterly Data Discrete Time
The table reports output of a simulation study of the accuracy of the structural model parameters estimated using the OLS, FGLS-SUR-IV, GMM,
and MEF approaches to the AK-Vasicek model in Discrete Time. For 1,000 replications, we generate 25 years of data from the underlying continuous
time data generating process (DGP) and apply our estimation strategy. We show the median estimate, and provide the interquartile range below it.

Parameter Estimates from Simulation Study – Monthly & Quarterly Data

Monthly Data Quarterly Data
DGP OLS FGLS-SUR-IV GMM MEF OLS FGLS-SUR-IV GMM MEF

κ 0.200 0.361
0.280

0.135
0.084

0.365
0.268

0.282
0.249

0.366
0.286

0.114
0.056

0.385
0.310

0.335
0.279

γ 0.100 0.103
0.016

0.101
0.015

0.099
0.013

0.096
0.015

0.107
0.019

0.103
0.018

0.108
0.017

0.105
0.023

η 0.010 0.010
0.010

0.010
0.010

0.010
0.000

0.012
0.014

0.010
0.011

0.010
0.010

0.010
0.000

0.011
0.008

ρ 0.030 0.034
0.011

0.033
0.009

0.031
0.007

0.030
0.006

0.039
0.017

0.034
0.012

0.039
0.012

0.036
0.013

δ 0.050 0.050 0.050 0.050 0.047
0.011

0.050 0.050 0.050 0.050
0.008

σ 0.020 0.072
0.135

0.034
0.117

0.020
0.001

0.020
0.002

0.134
0.187

0.067
0.150

0.133
0.077

0.109
0.136
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Figure D2: Simulation Study – Objective Function with Elasticity
The figure reports the elasticity of the objective function to the parameter values for both the continuous
time and discrete time models. For each model, one parameter is varied over the range of the horizontal axis
while the other parameters are fixed at the estimated values for each method. Both the criterion function
and elasticity (percentage change of objective function divided by percentage change of parameter value)
are reported, where the objective function is −1 times the inner product of the elements of MT (φ). The
figure is an illustration for 1 of the 1,000 replications in the simulation study, with generated 25 years of data
from the underlying data generating process (DGP) in the case of monthly data. Panel A plots the criterion
function for both the continuous (solid line) and discrete time (dashed line) models, where the dot (reverse
triangle) is the estimated parameter value. Panel B plots the elasticity for both the continuous (solid line)
and discrete time (dashed line) models, where the dot (reverse triangle) is the estimated parameter value.

(A) Objective Function – Continuous Time (CT) and Discrete Time (DT)
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(B) Objective Function Elasticity – Continuous Time (CT) and Discrete Time (DT)
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E Appendix Tables

Table E1: Simulation Study – Sensitivity to DGP values
The table reports output of a simulation study into the sensitivity of the Table 1 monthly results for the
OLS (Panel A), FGLS-SUR-IV (Panel B), GMM (Panel C), and MEF (Panel D) methods to the parameter
settings used in the Data Generating Process (DGP). In each Panel, the top row reports the baseline DGP
settings and the second row the estimates obtained for these settings (these are the estimates of Table 1).
Then we vary one parameter at a time and consider two settings for each, one value lower than the one
used in the baseline setting, and one value higher than that of the baseline DGP setting (while keeping all
other parameters at the baseline settings). In all cases, for 1,000 replications, we generate 25 years of data
from the underlying DGP and apply our estimation strategy. We show the median estimate, and provide
the interquartile range below it.

Panel A: Parameter Estimates from Simulation Study –
OLS Sensitivity to DGP values

κ γ η ρ δ σ

Baseline DGP settings 0.200 0.100 0.010 0.030 0.050 0.020

OLS for Baseline DGP 0.349
0.286

0.201
0.036

0.083
0.035

0.080
0.015

0.050 0.317
0.040

DGP with κ = 0.1 0.272
0.251

0.200
0.055

0.070
0.038

0.079
0.019

0.050 0.313
0.058

DGP with κ = 0.5 0.628
0.348

0.201
0.018

0.112
0.033

0.081
0.009

0.050 0.319
0.024

DGP with γ = 0.05 0.325
0.283

0.087
0.036

0.033
0.023

0.049
0.014

0.050 0.193
0.063

DGP with γ = 0.2 0.354
0.287

0.412
0.067

0.174
0.070

0.135
0.033

0.050 0.460
0.067

DGP with η = 0.005 0.354
0.286

0.206
0.034

0.087
0.035

0.083
0.017

0.050 0.325
0.047

DGP with η = 0.05 0.175
0.310

0.054
0.221

0.002
0.040

0.032
0.009

0.050 0.000
0.094

DGP with ρ = 0.01 0.349
0.286

0.201
0.036

0.083
0.035

0.060
0.015

0.050 0.317
0.040

DGP with ρ = 0.1 0.349
0.286

0.201
0.036

0.083
0.035

0.150
0.015

0.050 0.317
0.040

DGP with δ = 0.01 0.349
0.286

0.201
0.036

0.083
0.035

0.080
0.015

0.010 0.317
0.040

DGP with δ = 0.1 0.349
0.286

0.201
0.036

0.083
0.035

0.080
0.015

0.100 0.317
0.040

DGP with σ = 0.01 0.348
0.284

0.201
0.034

0.083
0.035

0.080
0.012

0.050 0.317
0.037

DGP with σ = 0.05 0.351
0.289

0.200
0.045

0.083
0.038

0.080
0.026

0.050 0.319
0.061

39



Table E1, Panel B: Parameter Estimates from Simulation Study –
FGLS-SUR-IV Sensitivity to DGP values

κ γ η ρ δ σ

Baseline DGP settings 0.200 0.100 0.010 0.030 0.050 0.020

FGLS-SUR-IV for Baseline DGP 0.299
0.134

0.101
0.013

0.008
0.004

0.030
0.006

0.050 0.000
<0.001

DGP with κ = 0.1 0.263
0.146

0.101
0.022

0.009
0.004

0.030
0.006

0.050 0.000
<0.001

DGP with κ = 0.5 0.403
0.150

0.100
0.006

0.006
0.003

0.030
0.006

0.050 0.000
<0.001

DGP with γ = 0.05 0.404
0.214

0.051
0.012

0.008
0.003

0.030
0.006

0.050 0.000
<0.001

DGP with γ = 0.2 0.220
0.117

0.201
0.014

0.006
0.006

0.030
0.006

0.050 0.000
0.020

DGP with η = 0.005 0.220
0.117

0.100
0.007

0.002
0.005

0.030
0.006

0.050 0.012
0.020

DGP with η = 0.05 0.541
0.305

0.151
0.045

0.029
0.038

0.030
0.006

0.050 0.000
<0.001

DGP with ρ = 0.01 0.299
0.134

0.101
0.013

0.008
0.004

0.010
0.006

0.050 0.000
<0.001

DGP with ρ = 0.1 0.299
0.134

0.101
0.013

0.008
0.004

0.100
0.006

0.050 0.000
<0.001

DGP with δ = 0.01 0.299
0.134

0.101
0.013

0.008
0.004

0.030
0.006

0.010 0.000
<0.001

DGP with δ = 0.1 0.299
0.134

0.101
0.013

0.008
0.004

0.030
0.006

0.100 0.000
<0.001

DGP with σ = 0.01 0.298
0.134

0.101
0.013

0.009
0.003

0.030
0.003

0.050 0.000
<0.001

DGP with σ = 0.05 0.301
0.136

0.100
0.013

0.000
0.007

0.030
0.014

0.050 0.037
0.020
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Table E1, Panel C: Parameter Estimates from Simulation Study –
GMM Sensitivity to DGP values

κ γ η ρ δ σ

Baseline DGP settings 0.200 0.100 0.010 0.030 0.050 0.020

GMM for Baseline DGP 0.345
0.345

0.100
0.014

0.010
0.001

0.031
0.007

0.050 0.027
0.047

DGP with κ = 0.1 0.265
0.312

0.100
0.024

0.010
0.001

0.031
0.007

0.050 0.026
0.049

DGP with κ = 0.5 0.594
0.449

0.101
0.006

0.010
0.001

0.031
0.007

0.050 0.025
0.044

DGP with γ = 0.05 0.335
0.327

0.053
0.013

0.010
0.001

0.031
0.007

0.050 0.033
0.062

DGP with γ = 0.2 0.290
0.312

0.200
0.015

0.010
0.001

0.031
0.007

0.050 0.033
0.048

DGP with η = 0.005 0.330
0.319

0.100
0.007

0.005
<0.001

0.030
0.006

0.050 0.022
0.038

DGP with η = 0.05 0.352
0.351

0.197
0.554

0.050
0.050

0.042
0.265

0.050 0.157
0.678

DGP with ρ = 0.01 0.344
0.348

0.100
0.014

0.010
0.001

0.011
0.007

0.050 0.027
0.047

DGP with ρ = 0.1 0.345
0.345

0.100
0.014

0.010
0.001

0.101
0.007

0.050 0.027
0.047

DGP with δ = 0.01 0.344
0.345

0.100
0.014

0.010
0.001

0.031
0.007

0.010 0.027
0.047

DGP with δ = 0.1 0.344
0.346

0.100
0.014

0.010
0.001

0.031
0.007

0.100 0.027
0.047

DGP with σ = 0.01 0.352
0.361

0.101
0.014

0.010
0.001

0.031
0.003

0.050 0.020
0.044

DGP with σ = 0.05 0.344
0.325

0.100
0.015

0.010
0.001

0.031
0.017

0.050 0.052
0.032
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Table E1, Panel D: Parameter Estimates from Simulation Study –
MEF Sensitivity to DGP values

κ γ η ρ δ σ

Baseline DGP settings 0.200 0.100 0.010 0.030 0.050 0.020

MEF for Baseline DGP 0.354
0.284

0.099
0.013

0.010
0.001

0.030
0.006

0.050
0.002

0.023
0.005

DGP with κ = 0.1 0.212
0.239

0.099
0.026

0.010
0.001

0.030
0.006

0.050
0.002

0.020
0.003

DGP with κ = 0.5 0.624
0.350

0.100
0.005

0.010
0.001

0.030
0.006

0.050
0.001

0.021
0.003

DGP with γ = 0.05 0.393
0.324

0.050
0.014

0.010
0.001

0.030
0.006

0.050
0.002

0.021
0.006

DGP with γ = 0.2 0.356
0.282

0.199
0.013

0.010
0.001

0.030
0.006

0.050
0.002

0.021
0.004

DGP with η = 0.005 0.351
0.286

0.100
0.006

0.005
0.000

0.030
0.006

0.050
0.001

0.021
0.003

DGP with η = 0.05 0.578
0.723

0.143
0.049

0.049
0.006

0.030
0.007

0.051
0.037

0.023
0.130

DGP with ρ = 0.01 0.355
0.283

0.099
0.013

0.010
0.001

0.010
0.006

0.050
0.002

0.022
0.004

DGP with ρ = 0.1 0.356
0.284

0.099
0.013

0.010
0.001

0.100
0.006

0.050
0.002

0.019
0.001

DGP with δ = 0.01 0.356
0.282

0.099
0.013

0.010
0.001

0.030
0.005

0.010
0.002

0.023
0.005

DGP with δ = 0.1 0.357
0.288

0.099
0.013

0.010
0.001

0.030
0.006

0.100
0.002

0.020
0.004

DGP with σ = 0.01 0.355
0.294

0.099
0.013

0.010
0.001

0.030
0.003

0.050
0.002

0.011
0.001

DGP with σ = 0.05 0.356
0.282

0.099
0.013

0.010
0.001

0.030
0.014

0.049
0.002

0.054
0.010
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Table E2: Simulation Study – Monthly Data with Bias Correction
The table reports output of a simulation study of the accuracy of the structural model parameters estimated using the MEF approach to the AK-
Vasicek model, where bias correction methods are applied. We apply the formulas from Yu (2012, eq. (17)), Tang and Chen (2009, Theorem 3.1.1),
and two bootstrap methods inspired by Tang and Chen (2009, Section 4), where we bias correct based on both the mean and median simulated bias.
For 1,000 replications, we generate 25 years of data from the underlying continuous time data generating process (DGP) and apply our estimation
strategy. We show the median estimate, and provide the interquartile range below it.

Parameter Estimates from Simulation Study –
Monthly Data with Bias Correction Methods

Yu (2012) Tang and Chen (2009) Bootstrapped
DGP MEF (17) Theorem 3.1.1 Mean Median

κ 0.200 0.355
0.285

0.278
0.280

0.192
0.283

0.150
0.306

0.204
0.313

γ 0.100 0.099
0.013

0.099
0.013

0.099
0.013

η 0.010 0.010
0.001

0.010
0.001

0.010
0.001

0.010
0.001

ρ 0.030 0.030
0.006

0.030
0.006

0.030
0.005

δ 0.050 0.050
0.002

0.050
0.002

0.050
0.002

σ 0.020 0.023
0.005

0.020
0.006

0.022
0.005
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Table E3: Simulation Study – Variance Terms and Five Conditional Moment Restrictions
The table reports output of a simulation study of the incorporation of additional moments for the OLS, FGLS-SUR-IV, GMM, and MEF approaches
to the AK-Vasicek model. For 1,000 replications, we generate 25 years of data from the underlying data generating process (DGP) and apply our
estimation strategy. We show the median estimate, and provide the interquartile range below it.

Parameter Estimates from Simulation Study – Monthly & Quarterly Data

Monthly Data Quarterly Data
DGP OLS FGLS-SUR-IV GMM MEF OLS FGLS-SUR-IV GMM MEF

κ 0.200 0.168
0.141

0.299
0.134

0.311
0.348

0.285
0.425

0.171
0.155

0.227
0.119

0.177
0.265

0.244
0.422

γ 0.100 0.100
0.015

0.100
0.013

0.102
0.014

0.100
0.015

0.100
0.015

0.101
0.013

0.110
0.059

0.100
0.019

η 0.010 0.010
0.001

0.009
0.001

0.010
0.001

0.010
0.001

0.010
0.001

0.010
0.001

0.010
0.001

0.010
0.001

ρ 0.030 0.030
0.006

0.030
0.006

0.030
0.006

0.030
0.006

0.030
0.006

0.030
0.006

0.030
0.006

0.030
0.006

δ 0.050 0.050
<0.001

0.050
0.001

0.051
0.002

0.050
0.002

0.050
<0.001

0.051
0.001

0.054
0.067

0.050
0.004

σ 0.020 0.020
0.001

0.020
0.001

0.020
0.001

0.020
0.001

0.020
0.002

0.020
0.002

0.019
0.002

0.020
0.002
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Table E4: Simulation Study – Sensitivity of Regression-Based Methods to δ0 and σ0
The table reports output of a simulation study of the sensitivity of the Table 1 monthly results for the regression-based OLS and FGLS-SUR-IV
methods to the δ0 and σ0 settings. For δ0, we consider the values 0.01, 0.05 (base), and 0.10, and for σ0, we consider the values 0.01, 0.02 (base), and
0.05. We set the restricted value for δ equal to δ0 for internal consistency. Panel A reports the performance of the OLS method, and Panel B that of
the FGLS-SUR-IV method. Each panel consists of nine columns, where each column represents a δ0 and σ0 combination. For 1,000 replications, we
generate 25 years of data from the underlying data generating process (DGP) and apply our estimation strategy. We show the median estimate, and
provide the interquartile range below it.

Panel A: Parameter Estimates from Simulation Study – OLS Sensitivity to δ0 and σ0
δ0 = 0.01 δ0 = 0.05 δ0 = 0.10

DGP σ0 = 0.01 σ0 = 0.02 σ0 = 0.05 σ0 = 0.01 σ0 = 0.02 σ0 = 0.05 σ0 = 0.01 σ0 = 0.02 σ0 = 0.05

κ 0.200 0.292
0.281

0.295
0.282

0.305
0.286

0.349
0.286

0.349
0.286

0.350
0.286

0.354
0.281

0.354
0.281

0.354
0.282

γ 0.100 0.108
0.034

0.109
0.034

0.114
0.033

0.201
0.036

0.201
0.036

0.206
0.036

0.312
0.053

0.313
0.054

0.317
0.054

η 0.010 0.039
0.026

0.040
0.026

0.042
0.026

0.083
0.035

0.083
0.035

0.085
0.036

0.131
0.051

0.131
0.051

0.133
0.052

ρ 0.030 0.054
0.012

0.055
0.012

0.057
0.012

0.080
0.015

0.080
0.015

0.083
0.015

0.111
0.024

0.112
0.024

0.114
0.025

δ 0.050 0.010 0.010 0.010 0.050 0.050 0.050 0.100 0.100 0.100
σ 0.020 0.222

0.051
0.224
0.050

0.234
0.047

0.316
0.041

0.317
0.040

0.324
0.040

0.401
0.057

0.402
0.057

0.408
0.058

Panel B: Parameter Estimates from Simulation Study – FGLS-SUR-IV Sensitivity to δ0 and σ0
δ0 = 0.01 δ0 = 0.05 δ0 = 0.10

DGP σ0 = 0.01 σ0 = 0.02 σ0 = 0.05 σ0 = 0.01 σ0 = 0.02 σ0 = 0.05 σ0 = 0.01 σ0 = 0.02 σ0 = 0.05

κ 0.200 0.196
0.210

0.201
0.211

0.223
0.201

0.299
0.134

0.299
0.134

0.297
0.134

0.109
0.058

0.108
0.058

0.104
0.058

γ 0.100 0.067
0.041

0.068
0.039

0.071
0.031

0.101
0.013

0.101
0.013

0.102
0.013

0.161
0.019

0.161
0.019

0.163
0.020

η 0.010 0.018
0.026

0.019
0.024

0.021
0.020

0.009
0.003

0.008
0.004

0.000
0.004

0.000
<0.001

0.000
<0.001

0.000
<0.001

ρ 0.030 0.038
0.008

0.038
0.008

0.039
0.008

0.030
0.006

0.030
0.006

0.031
0.006

0.032
0.006

0.032
0.006

0.033
0.007

δ 0.050 0.010 0.010 0.010 0.050 0.050 0.050 0.100 0.100 0.100
σ 0.020 0.132

0.033
0.133
0.032

0.140
0.028

0.000
<0.001

0.000
<0.001

0.036
0.018

0.058
0.042

0.061
0.040

0.077
0.033
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Table E5: Estimates – Variance Terms and 5 Moment Conditions
The table reports estimates for the structural model parameters estimated using OLS, FGLS-SUR-IV, GMM, and MEF approaches for the AK-Vasicek
model. For OLS and FGLS-SUR-IV, we use the variance terms for the consumption and interest rate equation, and for GMM and MEF, we use
five conditional moment restrictions. We run the estimation for monthly data (where production is measured by IP) and quarterly data (production
measured by GDP). The sample runs from January, 1982, through December, 2012. Asymptotic t-statistics are given below the estimates.

Parameter Estimates from Empirical Data

Monthly Data Quarterly Data
OLS FGLS-SUR-IV GMM MEF OLS FGLS-SUR-IV GMM MEF

κ 0.096
0.436

0.083
0.270

0.030
0.185

0.069
0.679

0.114
1.064

0.065
2.083

0.045
0.769

0.048
0.697

γ 0.101
4.002

0.101
1.671

0.045
0.186

0.108
0.602

0.134
2.715

0.130
2.329

0.089
2.054

0.098
0.924

η 0.018
1.284

0.018
0.444

0.005
0.669

0.007
0.051

0.028
0.693

0.019
0.608

0.000
<0.001

0.007
0.097

ρ 0.015
0.441

0.015
1.139

0.006
0.153

0.004
0.089

0.022
0.672

0.021
0.957

0.009
0.444

0.020
0.538

δ 0.098
1.298

0.106
1.443

0.050 0.081
0.243

0.128
0.732

0.153
0.682

0.050 0.040
0.173

σ 0.018
0.065

0.018
0.082

0.014
0.994

0.018
0.008

0.018
0.078

0.017
0.003

0.000
<0.001

0.019
0.010
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Table E6: Simulation Study – Iterated MEF Approach
The table reports output of a simulation study of the accuracy of the structural model parameters estimated using the iterated MEF approaches
for the AK-Vasicek model. For 100 replications, we generate 25 years of data from the underlying data generating process (DGP) and apply our
estimation strategy. We report estimates using the MEF approach with both three and five moment conditions for the regular MEF and iterated
approach, for two iterations. We show the median estimate, and provide the interquartile range below it.

Parameter Estimates from Simulation Study – Iterated MEF 3 and 5 Moments

Monthly Data Quarterly Data
3 Conditions 5 Conditions 3 Conditions 5 Conditions

DGP MEF two-step MEF MEF two-step MEF MEF two-step MEF MEF two-step MEF

κ 0.200 0.348
0.309

0.239
0.202

0.288
0.480

0.200
0.204

0.353
0.310

0.316
0.339

0.241
0.366

0.209
0.129

γ 0.100 0.100
0.012

0.109
0.048

0.101
0.014

0.104
0.017

0.099
0.013

0.130
0.074

0.100
0.021

0.107
0.021

η 0.010 0.010
0.001

0.001
0.002

0.010
0.001

0.010
0.000

0.010
0.002

0.000
0.001

0.010
0.001

0.010
0.001

ρ 0.030 0.030
0.005

0.032
0.010

0.030
0.006

0.031
0.007

0.030
0.006

0.032
0.016

0.030
0.005

0.030
0.012

δ 0.050 0.050
0.002

0.059
0.045

0.050
0.002

0.051
0.008

0.050
0.003

0.072
0.063

0.050
0.005

0.055
0.019

σ 0.020 0.022
0.005

0.025
0.018

0.020
0.001

0.020
0.001

0.024
0.011

0.030
0.030

0.020
0.002

0.020
0.003
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