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Abstract

Using a Bewley-Hugget-Aiyagari model we show how to use the Fokker-Planck
equation for likelihood inference in heterogeneous agent (HA) models. We study
the finite sample properties of the maximum likelihood estimator (MLE) in Monte
Carlo experiments using cross-sectional data on wealth and income. We use the
Kullback-Leibler divergence to investigate identification problems that may affect
inference. Unrestricted MLE leads to considerable biases of some parameters. Cal-
ibrating weakly identified parameters is shown to be useful to pin down the remain-
ing structural parameters. We illustrate our approach by estimating the model for
the U.S. economy using the Survey of Consumer Finances.
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1. Introduction

Heterogeneous agent (HA) models have become an extensively used tool for the study

and evaluation of macroeconomic policies and welfare implications. They have been used

to address questions related to social security reforms, the precautionary savings behavior

of agents, employment mobility and wealth inequality. A comprehensive review of the

developments made in the field of HA models during the last three decades can be found

in Ŕıos-Rull (1995, 2001) and Heathcote et al. (2009). More recently, they have been

used for the study of the distributional implications of monetary and fiscal policies (see

Ozkan et al., 2016; Holm, 2022; Kaplan et al., 2018; Wong, 2021).

Currently, the main workhorse of household heterogeneity is based on the models by

Bewley (Undated), Huggett (1993) and Aiyagari (1994). Their theories are motivated

by the empirical observation that individual earnings, savings, wealth, and labor exhibit

much larger fluctuations over time than per-capita averages, and accordingly significant

individual mobility is hidden within the cross-sectional distributions. These ideas have

been formalized with the use of dynamic and stochastic general equilibrium models of a

large number of rational consumers that are subject to idiosyncratic income fluctuations

against which they cannot fully insure due to market incompleteness.

The standard approach to study the quantitative properties of these models is based

on the calibration of their structural parameters. Hence, the parameter values are either

fixed to those for which there exists a wide consensus in the literature, or chosen in such

a way that they minimize the distance between a subset of moments obtained from the

model and the same moments computed from the data, or by a combination of both. Ac-

cordingly, calibration can be classified as a partial or limited information approach in the

sense that it only makes use of a subset of the model cross-equation restrictions. Kydland

and Prescott (1982) introduced calibration into macroeconomics with subsequent devel-

opments made by Prescott (1986), Cooley and Prescott (1995) and Gomme and Rupert

(2007). Recent examples that combine both types of calibration approaches, conditional

on estimated values for the exogenous income process, can be found in Benhabib et al.

(2019), Luo and Mongey (2019), Abbott et al. (2019).
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On the other hand, full information methods which rely on the entire probability

distribution of the model have received less attention. Given the increased quality and

quantity of household data, the first contribution of this paper is to introduce a likeli-

hood framework that can be used to estimate the structural parameters of HA models

using the information content on a sample of cross-sectional data, xi. The approach

proposed here uses the fact that any HA model with parameter vector θ induces a joint

distribution of idiosyncratic state variables with probability density function g(θ) that

can be used to compute the likelihood of the data,
∑

i log g(θ | xi). In this paper, we

rely on the ability to compute the model’s implied stationary probability density func-

tion which can be later used to build the likelihood function of the model. Hence, our

approach applies exclusively to the estimation of structural parameters that affect the

steady state of macroeconomic aggregates from microeconomic data. Using a standard

Bewley-Hugget-Aiyagari, we show how to combine the time-invariant equilibrium joint

probability distribution of wealth and income with a sample of observations on individ-

ual’s wealth and labor status to estimate different subsets of structural parameters of the

model, e.g., household preferences, production technology, and/or idiosyncratic income

dynamics. Likelihood-based methods provide a natural point for the investigation of

efficiency and identification properties to the extent that the commonly used partial in-

formation methods, like the simulated method of moments (SMM), only rely on a subset

of the full information provided by the likelihood function. Hence, the full information

approach allows the econometrician: (i) to assess the uncertainty surrounding the param-

eter values which ultimately provides a framework for inference and hypothesis testing,

and (ii) to use standard tools for model selection and evaluation.

In general, the computation of the probability density function of the state variables

in HA models is not straightforward as it turns out to be a complicated endogenous and

nonlinear object that usually has to be numerically approximated either by Monte Carlo

simulation or functional approximation techniques (see Heer and Maussner, 2009). More

recently, Bayer and Wälde (2010a,b, 2011), Achdou et al. (2014), and Gabaix et al. (2016)

have suggested the use of Fokker-Planck equations, also known as Kolmogorov’s Forward
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equations, for the analysis of endogenous distributions in macroeconomics. These par-

tial differential equations (PDEs) describe the entire dynamics of any probability density

function in a very general manner without the need to impose any particular functional

form. When combined with the Hamilton-Jacobi-Bellman equation that describes the

optimal consumption-saving decisions of economic agents, they form a system of coupled

PDEs that can be numerically solved with high degree of accuracy and computational

efficiency on the entire state-space of the model using the finite difference methods in

Candler (1999) and Achdou et al. (2022).

A condition for the maximum likelihood (ML) estimator to deliver consistent esti-

mates of the model parameters, and for valid asymptotic inference is identification (see

Newey and McFadden, 1986). Roughly speaking, identification refers to the fact that the

likelihood function must have a unique maximum at the true parameter vector and at

the same time display enough curvature in all its dimensions. Lack of identification leads

to misleading statistical inference that may suggest the existence of some features in the

data that are in fact absent. Therefore, it is important to verify the identification con-

dition prior to estimation1. The recent contributions of Canova and Sala (2009), Iskrev

(2010), Komunjer and Ng (2011), Qu and Tkachenko (2012), and Rı́os-Rull et al. (2012)

point out in that direction by providing tools that can be used to assess the identifiability

of parameters in structural macroeconomic models.

The second contribution of this paper is to investigate whether it is possible, and to

what extent, to (locally) identify the structural parameters of heterogeneous agent mod-

els in our likelihood-based framework. Checking for identification in practice is difficult

since the mapping from the structural parameters of the model to the objective function is

highly nonlinear and usually not known in closed form. Therefore, the standard rank and

order conditions in Rothenberg (1971) for linear models cannot be applied. Instead, we

propose to use the Kullback-Leibler (KL) divergence between two distribution functions

(see Kullback and Leibler, 1951, Kullback, 1959 and McCulloch, 1989) to investigate the

identification power of our ML estimator. The KL divergence is computed for the model’s

1See Ireland (2004) and Mumtaz and Zanetti (2015) for an early discussion of potential identification
issues in the estimation of representative agent DSGE models.
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implied distribution and hence it is independent of the data. This allows the researcher to

analyze the sensibility of the model’s probability distribution function to changes in the

parameter values even before any estimation takes place. Lack of variability along any

dimension of the parameter space provides an early diagnosis for potential identification

issues. In fact, irregular behavior in the density function found at this stage will impact

the estimator’s objective function and hence limit its ability to accurately identify the

parameters of the model using the likelihood of the data.

The estimation approach proposed in this paper differs from related contributions

by Mongey and Williams (2017), Williams (2017), and Winberry (2018). They employ

Bayesian-likelihood methods to estimate the parameters that govern the dynamics of ag-

gregate exogenous macroeconomic shocks, conditional on calibrated values for the prefer-

ence parameters which ultimately depend on the cross-sectional stationary distribution of

individual states. Therefore, their statistical methods do not make any use of the model’s

implied probability density function. Challe et al. (2017) extend this approach by includ-

ing a subset of the preference parameters in the estimation step and hence some knowledge

of the cross-sectional probability density function is in principle required. However, in

their quantitative exercise they collapse the model’s density function to a single mass point

and therefore do not make use of the entire distribution function in the estimation process.

More recently, Bayer et al. (2020) make use of Bayesian methods to estimate the

dynamics of the aggregate shocks and frictions in a New Keynesian HA model (HANK),

while calibrating most of the structural parameters. Using the solution method in Reiter

(2009) and Bayer and Luetticke (2020), the likelihood function of the linearized model is

computed via the Kalman filter. They estimate the model using both data on macroe-

conomic aggregates together with cross-sectional information in the form of snapshots

of the cross-sectional distribution, but not the entire cross-sectional distribution of the

individual’s state variables. A similar approach is followed by Auclert et al. (2021) using

the moving average representation implied by the sequence-space Jacobian method. On

the other hand, Fernández-Villaverde et al. (2020) use continuous-time methods in order

to exploit the Fokker-Planck equation that describes the time evolution of the probability
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density function of aggregate macroeconomic variables in a non-linear HANK model. Us-

ing quarterly data on aggregate output in the U.S., they estimate the volatility parameter

of the aggregate exogenous shock conditional on the calibrated values of all the remaining

parameters. Unfortunately, the paper is silent about including microeconomic data in the

estimation. In general, the existing frameworks only exploit the information content of

macroeconomic aggregates in addition to some cross-sectional information in the form

of summary statistics. In contrast, in this paper we use of the information available in

the entire cross-sectional distribution of microeconomic data to estimate parameters that

enter directly in the computation of the steady state of the economy. Closer to our ap-

proach is the work by Papp and Reiter (2020) and Liu and Plagborg-Møller (2021). They

develop likelihood-based methods to estimate the parameters of HA models using simul-

taneously macroeconomic time series and microeconomic data in the form of snapshots

(moments) of either repeated cross-sections or panel data. However, both papers only

provide proof-of-concept examples where the focus is on a reduced number of parameters

affecting primarily the exogenous processes of idiosyncratic states.

The rest of the paper is organized as follows. Section 2 shows how to compute the

model’s likelihood function from the stationary joint density function that solves the

model’s Fokker-Planck equation. To illustrate our approach, we introduce a Bewley-

Hugget-Aiyagari model in which a large number of households face idiosyncratic and

uninsurable income risk in the form of exogenous shocks to their labor productivity. We

characterize and solve for the stationary competitive equilibrium which equip us with a

time-invariant joint probability distribution of wealth and income for estimation and/or

identification purposes. While our framework can be easily extended to include cross-

sectional data on a number of additional endogenous variables, e.g., individual consump-

tion, our general equilibrium approach limits this possibility unless additional features

such as measurement errors are considered.

Section 3 examines the finite sample properties of the MLE using a Monte Carlo ex-

periment. We identify potential biases and the precision of the estimates along different

dimensions of the parameter space. Our results suggest that estimating the complete
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set of parameters using cross-sectional data on income and wealth leads to considerable

biases on the parameters describing the HA income process, but also on other parameters

such as the coefficient of relative risk aversion. As a negative result, the biases in these

parameters persists in large samples and their distributions tend to be wide and skewed.

In Section 4 we compute the KL divergence associated to the model’s implied distribu-

tion function and find that the poor performance of the MLE can be explained by the

insensibility of the wealth-income distribution to changes in this subset of parameters.

On the other hand, we find that cross-sectional data is informative for parameters related

to the supply side, like the capital share in output and the depreciation rate.

A standard practice in applied macroeconomics when identification problems arise

is to fix the parameters that are believed to be unidentifiable to arbitrary values and

estimate the remaining ones. In Section 5 we investigate the consequences of following

such a strategy and find that even in cases where some parameters are mis-calibrated

the MLE, conditional on some parameters being calibrated, improves the finite sample

properties of the parameters being estimated. Section 6 provides an empirical illustration

of our proposed framework by estimating the parameters of a Bewley-Hugget-Aiyagari

model for the U.S. economy using individual data on wealth and income from the 2013

Survey of Consumer Finances. Section 7 concludes.

2. Structural estimation

While there is a broad consensus on the importance of heterogeneity in macroeconomics,

there is less agreement on how these models should be taken to the data. In this section

we show how to estimate the structural parameters of heterogeneous agent models using

full information methods on a sample of cross-sectional data. We use the fact that any HA

model with parameter vector θ induces a joint distribution of idiosyncratic state variables

with stationary probability density function g(θ) that can be used to compute the likeli-

hood of the data. As shown below, our approach makes use of the model’s Fokker-Planck

equation to approximate the stationary probability density function of the state variables.
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More specifically, let {xi}Ni=1 be a sample of N i.i.d observations of the state variables.

Then, the log-likelihood function of any HA model can be computed as

LN (θ | x) =
N∑
i=1

log g (x | θ) , (1)

where θ ∈ Θ ⊂ RM is the M× 1 vector of structural parameters, and where Θ is the

parameter space, assumed to be compact. The ML estimator, θ̂N is defined as

θ̂N = argmax
θ∈Θ

LN (θ | x1 . . . ,xN) . (2)

A prototypical heterogeneous agent model

To show how the estimation approach works, we consider a prototypical HA model á la

Bewley-Hugget-Aiyagari as in Achdou et al. (2022). In our economy there is no aggregate

uncertainty, and we assume that all aggregate variables are constant and equal to their

steady-state values, while at the individual level households face idiosyncratic uninsurable

risk and variables change over time in a stochastic way.

Households

Consider an economy with a continuum of unit mass of infinitely lived households where

decisions are made continuously in time. Each household consists of one agent, and we

will speak of households and agents interchangeably. Household i, with i ∈ (0, 1), has

standard preferences over streams of consumption, ct, defined by

U0 ≡ E0

∫ ∞

0

e−ρtu(ct)dt, (3)

where ρ > 0 is the subjective discount rate, and where the instantaneous utility function

is given by

u (ct) =


c1−γ
t /(1− γ) for γ ̸= 1

log (ct) for γ = 1.
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Here, γ > 0 denotes the coefficient of relative risk aversion (or the inverse of the elasticity

of intertemporal substitution, EIS). At time t = 0, the agent knows his initial wealth and

income level and chooses the optimal path of consumption {ct}∞t=0 subject to

dat = (rat + wet − ct)dt, a0 ∈ A, (4)

where at ∈ A ⊂ R denotes the household’s wealth per unit of time and r the interest rate.

Wealth increases if capital income, rat, plus labor income, wet, exceeds consumption, ct.

At every instant of time, households face uninsurable idiosyncratic and exogenous shocks

to their endowment of efficiency labor units, et ∈ E , making their labor income stochastic

(see Castañeda et al., 2003). Finally, w denotes the wage rate per efficiency unit which

is the same across households and determined in general equilibrium together with the

interest rate.

Following Huggett (1993), the endowment of efficiency units can be either high, eh,

or low, el. The endowment process follows a continuous-time Markov Chain with state

space E = {eh, el} described by

det = −∆edq1,t +∆edq2,t, ∆e ≡ eh − el and e0 ∈ E , (5)

where ∆e can be interpreted as the labor efficiency gap. The Poisson process q1,t counts

the frequency with which an agent moves from a high to a low efficiency level, while the

Poisson process q2,t counts how often it moves from a low to a high level. As an individ-

ual cannot move to a particular efficiency level while being in that same level, the arrival

rates of both stochastic processes are state dependent. Let ϕ1 (et) ≥ 0 and ϕ2 (et) ≥ 0

denote the demotion and promotion rates respectively, with

ϕ1(et) =

 ϕhl et = eh

0 et = el

, and ϕ2(et) =

 0 et = eh

ϕlh et = el.

Finally, households in this economy cannot run their wealth below a, where an ≤

a ≤ 0, and an = −wel/r defines the natural borrowing constraint implied by the non-
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negativity of consumption. Hence, A = [a,∞).

Production possibilities and macroeconomic identity

Aggregate output in this economy, Y , is produced by identical firms owned by the house-

holds. The representative firm combines aggregate capital, K, and aggregate labor, L,

through a constant return to scale production function Y = KαL1−α, with α ∈ (0, 1), to

maximize its profits.

We assume that the aggregate capital stock in the economy depreciates at a constant

rate, δ ∈ [0, 1]. Since our focus is on the steady state, all the investment decisions in the

economy are exclusively directed towards replacing depreciated capital. Therefore, the

macroeconomic identity

Y = C + δK (6)

holds ∀t, where C and δK denote, respectively, aggregate consumption and aggregate

investment. We have removed the temporal subscript t from all aggregate variables to

indicate that the economy is in a stationary equilibrium2.

Equilibrium

In this economy, households face uncertainty regarding their future level of labor effi-

ciency. This makes their labor income and wealth also uncertain. Hence, the state of the

economy at instant t is characterized by the wealth-income process (at, et) ∈ A×E defined

on a probability space (Ω,F , G) with associated joint density function g (at, et, t). In a

stationary equilibrium the density function is independent of time and thus it simplifies

to g (at, et).

Households. For any given values of r and w, the optimal behavior of each of the

households in the economy can be represented recursively from the perspective of time t

2Introducing a time series dimension at the aggregate level through an aggregate productivity shock
is straightforward from a modeling perspective (see Ahn et al., 2017). However, this increases the
computational time dramatically making any extensive Monte Carlo investigation infeasible.
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by the Hamilton-Jacobi-Bellman equation (HJB)

ρV (a, e) = max
c∈R+

{
u(c) + Va(a, e)(ra+ we− c)

+ (V (a, el)− V (a, eh))ϕ1(e) + (V (a, eh)− V (a, el))ϕ2(e)
}
, (7)

where V (a, e) denotes the value function of the agent3. The first-order condition for an

interior solution reads

u′ (c) = Va (a, e) (8)

for any t ∈ [0,∞), making optimal consumption a function only of the state variables

and independent of time, c = c(a, e).

Due to the state dependence of the arrival rates, only one Poisson process will be active

for each of the values in E . This leads to a bivariate system of maximized HJB equations

ρV (a, el) = u(c(a, el)) + Va(a, el)(ra+ wel − c(a, el)) + (V (a, eh)− V (a, el))ϕlh, (9)

ρV (a, eh) = u(c(a, eh)) + Va(a, eh)(ra+ weh − c(a, eh)) + (V (a, el)− V (a, eh))ϕhl.(10)

As argued in Achdou et al. (2022), Equation (8) holds for all a > a since the bor-

rowing constraint never binds in the interior of the state space. Therefore, the system of

equations formed by (9) and (10) does not get affected by the existence of the inequality

constraint a ≥ a, and instead gives rise to a state-constraint boundary condition that

ensures that the borrowing constraint is never violated.

Firms. The representative firm rents capital and labor from the households in per-

fectly competitive markets. Hence, in equilibrium the production factors are paid their

respective marginal products

r = αKα−1L1−α − δ and w = (1− α)KαL−α, (11)

3A complete derivation of the HJB equation, the Fokker-Planck equations that described the subden-
sity functions of wealth, and the stationary probability distributions of the efficiency endowments can
be found in the Online Appendix.
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where K =
∑

et∈{el,eh}
∫∞
a

atg (a, e) da and L =
∑

e∈{el,eh}
∫∞
a

etg (a, e) da. This form of

aggregation provides a link between the dynamics and randomness that occurs at the

micro level with the deterministic behavior at the macro level.

Distribution of endowments and wealth. Given its dependence on one continuous ran-

dom variable and one discrete random variable, the stationary joint density function,

g (a, e), can be split into g (a, eh) and g (a, el). Following Khieu and Wälde (2019), we

refer to these individual probability functions as subdensities. For each e ∈ E , it follows

that g (a, e) ≡ g (a | e) p (e), implying that

∫
g (a, e) da = p (e) , (12)

where p (e) ≡ limt→∞ P (et = e) is the stationary probability of having an efficiency en-

dowment equal to e. Then, the (marginal) stationary density function of wealth is

g (a) = g (a, eh) + g (a, el) . (13)

Given our two state Markov process for the endowment of labor efficiency units it is

possible to show that its stationary distribution is given by

p (eh) =
ϕlh

ϕhl + ϕlh

, and p (el) =
ϕhl

ϕhl + ϕlh

. (14)

Let s (a, e) = ra+ we− c (a, e) denote the optimal savings function for an individual

with an efficiency endowment equal to e ∈ E . The subdensities in (13) correspond to the

solution of the following non-autonomous quasi-linear system of differential equations

known as (stationary) Fokker-Planck equations

s (a, el)
∂

∂a
g (a, el) = −

(
r − ∂

∂a
c (a, el) + ϕlh

)
g (a, el) + ϕhlg (a, eh) , (15)

s (a, eh)
∂

∂a
g (a, eh) = −

(
r − ∂

∂a
c (a, eh) + ϕhl

)
g (a, eh) + ϕlhg (a, el) , (16)

where the partial derivatives with respect to wealth describe the cross-sectional dimen-
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sion of the density function. The system of equations formed by (15) and (16) takes

as given the optimal policy functions for consumption. This feature creates a recursive

structure within the model that facilitates its solution: households and firms meet at the

marketplace and make their choices taking prices as given. Prices in turn are determined

in general equilibrium and hence depend on the entire distribution of individuals in the

economy. Such distribution is determined by the optimal choices of households and the

stochastic properties of the exogenous shocks.

Equilibrium. A stationary equilibrium is defined as a situation where the aggregate

variables and prices in the economy are constant, the joint distribution of wealth and

income is time-invariant, and all markets clear. More specifically, while the distribution

of wealth is constant for both the low and high efficiency workers and the number of

low and high efficiency workers is also constant, the households are not characterized by

constant wealth levels and efficiency status over time. Achdou et al. (2022) show that

such stationary equilibrium is unique if the EIS is greater or equal than one, i.e. 1/γ ≥ 1.

Closely related results for the case of discrete-time economies have been shown in Açikgöz

(2018) and Light (2020).

The solution of our prototype economy is not available in closed form. Therefore, for

a given set of parameter values, the stationary competitive equilibrium is numerically

approximated on a discretized state space for A using the finite-difference approaches in

Candler (1999) and Achdou et al. (2022). A detailed description of the algorithm and its

implementation can be found in the Online Appendix.

The likelihood function

Let {xi}Ni=1 = {ai, ei}Ni=1 = {a1, e1 . . . , aN , eN} be a sample of N i.i.d observations on indi-

vidual wealth and income, respectively. Then, the log-likelihood function of the prototype

model can be computed as

LN (θ | a, e) =
N∑
i=1

log g (ai, ei | θ) . (17)
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Alternatively, by using identity (13), it is possible to obtain the marginal density of

wealth as g (ai | θ) = g (ai, el | θ)+ g (ai, eh | θ) for each i = 1, . . . , N . Therefore, in situ-

ations where only data on individual wealth is available, we can rewrite the log-likelihood

function as

LN (θ | a) =
N∑
i=1

log g (ai | θ) . (18)

In practice, the ML estimation is carried out by means of an iterative procedure

that requires solving the model for different values of the parameter vector θ. At each

iteration, the model is solved on the discretized state-space A × E as described in the

Online Appendix. While the efficiency lattice only takes two possible values, E = {el, eh},

the wealth lattice is discretized using I ≤ N points on a partially ordered set defined

by A = [min (a) ,max (a)]. Once the joint density function of wealth and income has

been approximated, the log-likelihood function is constructed in two steps: (i) For each

pair (ai, ei) ∈ a× e, we use a piece-wise linear interpolation to evaluate g (ai, ei | θ); (ii)

Once g (ai, ei | θ) has been evaluated for all (ai, ei) ∈ a× e, the log-likelihood function is

computed using (17)4.

3. Finite sample properties

This section uses Monte Carlo simulations to investigate the properties of the ML es-

timator in finite samples by estimating the model of Section 2 on artificially generated

data of individual wealth and individual income (labor efficiency). More precisely, and

since that θ shapes the stationary distribution of wealth and income, we are interested in

investigating whether the stationary distribution of wealth and income contains relevant

information in finite samples about the full set of parameters in the HA model. Similar

to many equilibrium models, estimates are often ill-behaved, so we study identification

problems in Section 4 and/or assess the finite sample performance of the ML estimator

4In terms of implementation, our approach is similar to that proposed in Young (2010) for discrete-
time models: (i) no use of simulation-based methods to approximate the model’s density function, and
(ii) the approximated density resembles a histogram along the state space. However, the weights given
to each point in the histogram are different in both approaches. In particular, our method uses the
cross-equation restrictions imposed by the equilibrium HJB and Fokker-Planck equations and does not
require a dense and uniformly state-space grid to approximate the model’s density.
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under different subsets of restrictions on the parameters.

The parameter values for the data generating process (DGP), θ0, are provided in

Table 1. In the model, time is measured in years and parameter values should be inter-

preted accordingly. To ensure the existence of a unique stationary equilibrium we assume

an economy with unitary EIS. The labor efficiency process is set to match the long run

employment-unemployment dynamics of the US economy. Following Shimer (2005), the

promotion rate is calibrated to match a monthly average job finding rate of 0.45, and

the demotion rate is calibrated to match a monthly average separation rate of 0.034.

The endowment level of high efficiency is normalized to one while that of low efficiency

is set to one-fifth of the one for employed individuals. These values imply a labor effi-

ciency gap, ∆e, of 80%, which is consistent with the values used in Huggett (1993), and

Imrohoroğlu (1989) and Krusell and Smith (1998). The transition rates for the Poisson

processes are computed using (14). The remaining parameter values are standard in the

literature, implying the capital-output ratio K/Y = 2.36, the interest rates r = 0.05, and

the aggregate savings rate (1− C/Y ) = 0.24.

The Monte Carlo experiment is based on M = 200 samples drawn from the model’s

population stationary joint density function g (a, e | θ0), each of them of size N ∈ {1,000,

5,000, 10,000}5. We first sample the two state labor efficiency units using the marginal sta-

tionary distribution in (14). Given the draws on the efficiency units, we then approximate

the population density of wealth, g (a|θ0), using I = 500 uniform grid points between a =

0 and amax = 100, from which we sample values of individual wealth using a slice sampler.

For each simulated sample, we proceed to estimate the model’s full parameter set using the

maximum likelihood estimator using only data on wealth, as well as data on both wealth

and income. The numerical maximization of the log-likelihood function is carried out by

means of a Global Search algorithm with 250 initial stage points and 500 trial points.

Table 2 summarizes the results. For each parameter θ ∈ θ, it reports: (i) the Median

Normalized Bias, MNB = median{(θ̂m− θ0)/θ0}; and (ii) the Mean Absolute Normalized

Errors, MANE = (1/M)
∑

m|(θ̂m − θ0)/θ0|. We report normalized metrics to avoid scale

5Each Monte Carlo experiment takes up to 28 hours on a dedicated 32 cores Xeon server.
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TABLE 1
Population parameters, θ0. The exogenous endowment of efficiency units is given by de =
−∆edq1 + ∆edq2, with ∆e ≡ eh − el, where q1 and q2 are Poisson processes with intensity
rates ϕlh and ϕhl respectively. The representative household has standard preferences defined
by Ut = Et

[∫∞
t eρ(s−t)u (c) ds

]
where u (c) = c1−γ/ (1− γ). The macroeconomic identity in

the stationary competitive equilibrium is given by Y = C + δK, where Y = KαL1−α. In
the model, time is measured in years and parameter values should be interpreted accordingly.

Parameter Value

Relative risk aversion, γ 1.0000
Rate of time preference, ρ 0.0490
Capital share in production, α 0.3600
Depreciation rate of capital, δ 0.1038
Endowment of high efficiency, eh 1.0000
Endowment of low efficiency, el 0.2000
Demotion rate, ϕhl 0.5578
Promotion rate , ϕlh 7.3822

problem when comparing estimates across parameters. Panel A present results when the

only data used in the estimation is individual wealth, while Panel B reports the results

when using data on both individual wealth and income.6

The simulation results reveal that some of the model parameters exhibit large biases

that persist even as the sample size increases. This includes the coefficient of relative

risk aversion, γ, the levels of labor efficiency units, {el, eh}, and their transition rates,

{ϕlh, ϕhl}. In particular, the ML estimates for these parameters imply extremely risk

averse households as well as income levels and transition rates that are larger than their

population values. For example, the average estimate of γ is between 2 to 7 times larger

than the true value in the population when only data on wealth is used. Similarly, the

average estimate for el is 4 times larger than in the population for a sample of wealth

and income with N =1,000 observations, 2 times larger for N =5,000, and just below

1 for N =10,000. Moreover, the differences between the (absolute value of) mean and

median biases suggest that the small sample parameter distributions are skewed. This is

particularly the case when both wealth and income data are used in the estimation. On

6Given the two-state nature of income levels in the model we do not attempt to estimate the param-
eters using only data on individual income. In this case, the distribution of income alone will not be
informative about the persistence and transitions of income shocks, (eh, el, ϕlh, ϕhl). However, as shown
in Section 4 the distribution of wealth provides information on the persistence parameters. Moreover,
the use of panel data or repeated cross-sections on income could improve the estimation of the income
parameters (see, e.g., Papp and Reiter, 2020 and Liu and Plagborg-Møller, 2021).

15



TABLE 2
Finite sample properties of the ML estimator. For each θ ∈ θ, the table reports
the Median Normalized Bias (MNB) and the Mean Absolute Normalized Errors (MANE)
from a Monte Carlo experiment using M = 200 samples, each of size N = {1,000,
5,000, 10,000}. Results in Panel A are based on cross-sectional data on wealth only,
while those in Panel B are based on cross-sectional data on both wealth and income.

MNB MANE MNB MANE MNB MANE

θ N=1,000 N=5,000 N=10,000

Panel A: Wealth only

γ 7.139 6.374 2.399 3.739 3.165 3.754

ρ 0.056 0.506 -0.058 0.383 0.058 0.303

α -0.218 0.225 -0.243 0.239 -0.205 0.192

δ 0.118 0.212 0.114 0.189 0.083 0.180

el 4.689 4.337 4.126 3.723 3.651 3.299

eh 0.892 0.867 0.926 0.890 0.715 0.719

ϕlh 0.071 0.468 -0.093 0.351 0.030 0.282

ϕhl 0.457 2.004 -0.061 1.547 0.257 1.039

Panel B: Wealth and income

γ 4.028 4.797 0.084 2.297 0.057 1.933

ρ 0.168 0.431 -0.011 0.312 0.223 0.308

α -0.205 0.215 -0.229 0.221 -0.138 0.155

δ 0.125 0.200 0.135 0.194 0.091 0.201

el 4.378 4.153 2.016 2.905 0.650 2.114

eh 0.940 0.848 0.898 0.858 0.567 0.618

ϕlh -0.070 0.417 0.057 0.389 0.120 0.351

ϕhl -0.070 0.449 0.046 0.398 0.139 0.355

the other hand, the biases on the discount rate, ρ, the capital share in production, α,

and on the depreciation rate, δ, are within reasonable ranges, even in small samples7.

In general, increasing the sample size reduces the estimated bias for most of the pa-

rameters. Panel A shows that augmenting the sample size from N=1,000 to N=5,000

observations reduces the MANE of largely biased parameters by around one to three or-

ders of magnitude. For example, the MANE for γ falls around 70.5% from 6.374 to 3.739,

while the MANE for el and ϕhl drop 16.5% and 29.5% from 4.337 to 3.723, and from 2.004

to 1.547, respectively. On the other hand, Panel B suggests that using data on both indi-

vidual wealth and individual income generally delivers ML estimates with smaller biases,

and relatively larger bias reductions as a function of the sample size. This is particularly

evident again for γ, el and ϕhl. However, the additional information brought by the use

7We do not propose to estimate the capital share and/or the depreciation rate from the wealth data
alone rather than from NIPA data. As illustrated by Figures 1 and 2 below even slight variations within
conventional calibrated values of these parameters can have great impact on the wealth distribution.
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of income data has limited effects on the estimation errors and biases for ρ, α and δ.

4. The Kullback-Leibler divergence

Overall, the finite sample results for the unrestricted ML estimator reveal substantial

differences among parameter estimates that could suggest potential identification prob-

lems, particularly for those that exhibit considerable normalized errors. To investigate

this possibility we take one step back and look at the model’s implied population dis-

tribution function, G0 ≡ G (a, e | θ0), and its associated population density function,

g0 ≡ g (a, e | θ0). Since the model’s probability density function constitutes the building

block of the maximum likelihood estimator in (17), examining its behavior will provide

valuable information on whether it is possible to achieve identification of the model pa-

rameters using the likelihood of the data. In particular, we are interested in studying

the sensitivity of the population distribution to small perturbations in the values of the

model’s structural parameters.

We propose to use the Kullback-Leibler (KL) divergence, or relative entropy, to mea-

sure the divergence between any two distributions (see Kullback and Leibler, 1951 and

Kullback, 1959). A similar procedure was proposed in Qu and Tkachenko (2017), where

the distance between any two spectral densities is used to study identification in the class

of linearized representative agent DSGE models. Let G̃ ≡ G (a, e | θ) and g̃ ≡ g (a, e | θ)

denote the model’s implied wealth-income distribution and density functions for θ ̸= θ0.

Then, the KL divergence from G̃ to G0 is defined as

DKL

(
G0 || G̃

)
=

∑
e∈E

∫
a∈A

g (a, e | θ0) log

(
g (a, e | θ0)

g (a, e | θ)

)
da.

The value of the KL divergence, k ≥ 0, measures the information differences between the

two distributions G0 and G̃. If k = 0, then if follows that G0 = G̃ almost everywhere

in A × E , despite the fact that θ ̸= θ0. For k > 0, however, the KL divergence does

not help to assess whether the difference between the two distributions is large or small

along A×E . Following McCulloch (1989), we therefore map the KL divergence between
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wealth-income distributions to the KL divergence between the two Bernoulli distribu-

tions, B (0.5) and B (q), where the implicit probability q is chosen in such a way that

DKL (B (0.5) ||B (q)) = DKL(G0 || G̃)8. As an example, suppose that the probability

implied by the two distributions G0 and G̃ is q = 0.51. This corresponds to assign-

ing a fair coin toss a probability of 0.51 when the true probability is 0.5. Interestingly,

Akaike (1973) and White (1982) have shown that minθ∈ΘDKL(G0 || G̃) = maxθ∈Θ LN as

N → ∞. Therefore, from an asymptotic perspective, the KL divergence can be used as

a device to explore the behavior of the log-likelihood function around the θ0, and hence,

to inform on the ability of the ML estimator to identify the model parameters.

Figure 1 plots the probability q implied by the KL divergence from G̃ to G as we vary

each θ ∈ θ while keeping the remaining parameters at their population values. All the

KL divergences, apart from that for γ, are constructed using parameter values that are

50% below and 50% above of the true parameter value. In the case of γ, we employ values

that lie 100% below and 100% above its population value. A dotted vertical line denotes

the value in the DGP. The results suggest that all things equal, small perturbations to ρ,

α and δ have a large impact on the shape of the joint distribution of wealth and income.

Therefore, conditional on a given sample being observed, the ML estimator should be

able to identify this subset of parameters given that small differences in their values will

produce significantly different density functions. On the contrary, the influence of γ and

some of the income process parameters is small which suggest that the likelihood surface

will be flatter along these dimensions of the parameter space reducing the ability of the

ML estimator to identify them from a given sample. This lack of curvature could explain

the poor performance of the unrestricted ML estimator along these dimensions of the

parameter space described in Section 3. To further exemplify the previous argument,

Figure 2 plots the model’s implied density of wealth for different values of the coefficient

of relative risk aversion and the share of capital in output. As suggested by the KL

divergence, small perturbations in γ have virtually no effect on the wealth distribution,

8McCulloch (1989) shows that the KL divergence from B (q) to B (0.5) is given by
DKL (B (0.5) ||B (q)) = − log (4q (1− q)) /2. Thus, q measures the divergence of an arbitrary Bernoulli

trial from a fair Bernoulli trial. Given the KL divergence k from G̃ to G0, it is straightforward to compute
the implied probability q.
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Figure 1. Kullback-Leibler divergence. The graph plots the implied probability q as-
sociated with the KL divergence from G (a | θ) to G (a | θ0) that results from varying each
parameter at a time while keeping the remaining ones at their population value. The vertical
dashed line denotes the true parameter value.

whereas small changes in α lead to substantial differences in the wealth distribution9.

9The sensitivity of the wealth distribution to changes in the remaining parameters of the model can
be found in the Online Appendix.
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Figure 2. Sensitivity of the wealth distribution. The graph shows the sensitivity of the
distribution of wealth, g (a|θ), for selected parameters. The dashed line denotes the population
density of wealth. The continuous lines correspond to the density of wealth resulting from small
perturbations in each parameter while keeping the remaining ones at their population value.

5. Calibration and estimation

Although the results from the previous section indicate that the parameter estimates ap-

proach their true values in the population as the sample size increases, they also suggest

that the identification power of the likelihood function of wealth and income is reduced in

some dimensions of the parameter space, particularly in small samples. For the prototype

economy of Section 2, these inaccuracies are reflected in poor estimates of the parameters

related to the exogenous income process and of the coefficient of relative risk aversion.

A common practice among economists to get around this obstacle is to calibrate the

parameters that are problematic and estimate the remaining ones.

To assess the consequences of following such a strategy, we investigate the finite sam-

ple behavior of the ML estimator when different subset of parameters are externally

calibrated. We begin by considering the case where only γ and ρ are estimated. Then,
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we move on to a case where we also estimate α and δ. In both cases, the exogenous

income process is fixed, a strategy that closely resembles the standard practice followed

in the heterogeneous agent literature (cf. Benhabib et al., 2019, Abbott et al., 2019

and Luo and Mongey, 2019). Accordingly, Table 3 summarizes the results from a set of

Monte Carlo experiments where we analyze the properties of the ML estimator condi-

tional on the calibrated values of the corresponding structural parameters of the model.

Each Monte Carlo simulation is based on M = 200 samples generated from the model’s

population stationary probability density function, each of them of size N =5,000.

We report the mean absolute normalized errors, MANE, the median normalized bias,

MNB, and the implied aggregate capital-output ratio (K/Y ), interest rate, and aggre-

gate savings rate across simulations. Panel A reports the outcomes when only data on

individual wealth is used in the estimation and Panel B reports the results when data on

both individual wealth and income is used. The last column from each panel replicates

the unrestricted ML estimation from Section 3 for comparison.

The results in Table 3 show that when we calibrate all the income parameters simul-

taneously, the ML estimator yields sharper estimates. In particular, we obtain smaller

biases in the estimation of the relative risk aversion, the discount rate and the capital

share in output, and a small deterioration in the precision with which we can estimate

the depreciation rate. Considerable improvements, relative to the unrestricted estima-

tion, are also obtained if we additionally calibrate the capital share in output and the

depreciation rate. In general, the size of the finite sample biases are positively related to

the number of parameters being estimated in that fixing a larger subset of parameters

to their true values in the population delivers more precise parameter estimates. This

directly translates to the model implied macroeconomic aggregates. In particular, notice

that the capital-output ratio, the interest rate, and the savings rate are estimated with

the most accuracy when only two parameters are estimated. These results hold across

the different data sets used in the estimation.

Next, we study the finite sample properties of the ML estimator when the income pro-

cess is only partially calibrated. We run Monte Carlo experiments conditional on the in-
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TABLE 3
Conditional estimates: subset of parameters, including the income process, fixed
to their population values. The table reports the Mean Absolute Normalized Er-
ror (MANE) and the Median Normalized Bias (MNB, in parenthesis) from a Monte
Carlo experiment with M = 200 samples, each of them of size N =5,000.

Panel A: Wealth only Panel B: Wealth and income

θ Restricted Unrestricted Restricted Unrestricted

γ 0.8732
(0.8732)

0.487
(−0.100)

3.739
(2.399)

0.8703
(0.8703)

0.489
(−0.073)

2.297
(0.084)

ρ 0.0180
(0.0009)

0.341
(−0.354)

0.383
(−0.058)

0.0180
(0.0009)

0.343
(−0.357)

0.312
(−0.011)

α α0 0.173
(−0.153)

0.239
(−0.243)

α0 0.185
(−0.147)

0.221
(−0.229)

δ δ0 0.318
(−0.130)

0.189
(0.114)

δ0 0.345
(−0.138)

0.194
(0.135)

el el,0 el,0 3.723
(4.126)

el,0 el,0 2.905
(2.016)

eh eh,0 eh,0 0.890
(0.926)

eh,0 eh,0 0.858
(0.898)

ϕlh ϕlh,0 ϕlh,0 0.351
(−0.093)

ϕlh,0 ϕlh,0 0.389
(0.057)

ϕhl ϕhl,0 ϕhl,0 1.547
(−0.061)

ϕhl,0 ϕhl,0 0.398
(0.046)

K/Y 0.0063
(0.0052)

0.0893
(0.0832)

0.3731
(−0.3114)

0.0063
(0.0051)

0.0942
(0.0777)

0.2859
(−0.3002)

Interest rate 0.0194
(−0.0160)

0.3406
(−0.3546)

0.5066
(0.0533)

0.0194
(−0.0159)

0.3430
(−0.3565)

0.3120
(−0.0132)

Savings rate 0.0063
(0.0052)

0.2437
(−0.0642)

0.2217
(−0.2152)

0.0063
(0.0051)

0.2601
(−0.0628)

0.2197
(−0.2246)

come levels, el and eh, being fixed to their values in the population, and conditional on the

transition rates, ϕlh and ϕhl, also fixed to their population values. The results are summa-

rized in Table 4. In general, we find that calibrating the levels of the income process alone

reduces both the absolute errors and the estimates’ biases considerably. This is particu-

larly the case for the coefficient of γ and α, and to a lesser extent, for the transition rates.

Calibrating the transition rates of the income process alone has limited consequences.

Although it helps to reduce the bias in γ by nearly half of that obtained from an uncon-

strained estimation, there is virtually no effect on the errors of the remaining parameters.

Interestingly, we find that the use of income data, in addition to wealth data, does not pro-

vide any additional information that can help to identify the income levels. This is most

likely due to the fact that the income data in this model is represented by a binary variable

and hence it only contains information about the stationary probabilities of states.

To further understand the effects of calibrating the income process, either partially or
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TABLE 4
Conditional estimates: income process fixed to their population values. The table reports the
Mean Absolute Normalized Error (MANE) and the Median Normalized Bias (MNB, in paren-
thesis) from a Monte Carlo experiment with M = 200 samples, each of them of size N = 5,000.

Panel A: Wealth only Panel B: Wealth and income

θ Income
levels

Transition
rates

All in-
come

Unrestr. Income
levels

Transition
rates

All in-
come

Unrestr.

γ 0.550
(−0.029)

1.518
(0.867)

0.487
(−0.100)

3.739
(2.399)

0.436
(−0.070)

1.423
(0.476)

0.489
(−0.073)

2.297
(0.084)

ρ 0.322
(−0.197)

0.403
(0.176)

0.341
(−0.354)

0.383
(−0.058)

0.284
(−0.2551)

0.403
(0.079)

0.343
(−0.357)

0.312
(−0.011)

α 0.080
(−0.027)

0.279
(−0.263)

0.173
(−0.153)

0.239
(−0.243)

0.067
(−0.033)

0.278
(−0.258)

0.185
(−0.147)

0.221
(−0.229)

δ 0.145
(0.004)

0.255
(0.060)

0.318
(−0.130)

0.189
(0.114)

0.124
(0.004)

0.277
(−0.031)

0.345
(−0.138)

0.194
(0.135)

el el,0 3.476
(3.527)

el,0 3.723
(4.126)

el,0 3.040
(2.001)

el,0 2.905
(2.016)

eh eh,0 1.068
(1.203)

eh,0 0.890
(0.926)

eh,0 0.918
(0.775)

eh,0 0.858
(0.898)

ϕlh 0.350
(−0.127)

ϕlh,0 ϕlh,0 0.351
(−0.093)

0.211
(−0.092)

ϕlh,0 ϕlh,0 0.389
(0.057)

ϕhl 0.718
(−0.134)

ϕhl,0 ϕhl,0 1.547
(−0.061)

0.220
(−0.085)

ϕhl,0 ϕhl,0 0.398
(0.046)

K/Y 0.0459
(0.0158)

0.3626
(−0.3650)

0.0893
(0.0832)

0.3731
(−0.3114)

0.0358
(0.0211)

0.3308
(−0.2734)

0.0942
(0.0777)

0.2859
(−0.3002)

Interest
rate

0.3234
(−0.2023)

0.4002
(0.1697)

0.3406
(−0.3546)

0.5066
(0.0533)

0.2841
(−0.2553)

0.4005
(0.0766)

0.3430
(−0.3565)

0.3120
(−0.0132)

Savings
rate

0.1379
(0.0288)

0.3381
(−0.2819)

0.2437
(−0.0642)

0.2217
(−0.2152)

0.1149
(0.0293)

0.3452
(−0.2860)

0.2601
(−0.0628)

0.2197
(−0.2246)

completely, Figure 3 plots the finite sample distribution of parameter estimates when we

use data on wealth and income in the estimation. A dotted vertical line represents the

true parameter values. The figure confirms not only that a strategy based on calibrating

the income levels delivers relatively unbiased parameter estimates, but also more precise

estimates, as measured by the dispersion around the mean estimates. On the contrary, the

simultaneous calibration of all income parameters produces sharp estimates of γ and ρ but

it also generates distributions that exhibit multiple modes for α and δ that could suggest

further identification problems. To investigate this claim we compute the KL divergence

from G̃ to G0, and the associated implied probability q, that results from varying both α

and δ simultaneously while keeping the remaining parameters at their population values.

Figure 4 plots the contour for q (α, δ) which shows the presence of a ridge in the α − δ

space. In other words, a proportional increase in both parameters produces almost obser-
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Figure 3. Finite sample distribution of parameter estimates. The graph plots the kernel
density of estimated parameters across M = 200 random samples of size N = 5,000 generated
from the true data generating process. The estimation uses data on individual wealth and
income. The vertical line denotes the true parameter value.

vationally equivalent distribution functions, and therefore partial identification problems.

The tight relation between α and δ is an example of identification deficiencies that

are rooted in the economic theory and could persist even in samples of finite size. As

an example, consider the steady state capital-output ratio from the standard neoclassical

growth model, K/Y . Assuming that the gap r − ρ does not vary significantly with α

and δ, and thus implicitly assumed to be relatively constant, the capital-output ratio of

the Bewley-Hugget-Aiyagari economy is proportional to that of the neoclassical growth

model, K/Y ∝ α/(ρ + δ). Therefore, for a given stationary capital-output ratio, and

a given discount rate, the stationary equilibrium leads to a positive relation between α

and δ similar to that depicted in Figure 4. The Monte Carlo evidence suggests that

the multimodality in these two parameters, with their corresponding implications for

identification, can be alleviated by calibrating the income process only partially. As
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Figure 4. Kullback-Leibler divergence. The graph plots the contour of the implied prob-
ability q associated with the bivariate KL divergence that results from varying α and δ simul-
taneously while keeping the remaining parameters at their population value. The dot denotes
the true parameter value.

shown in Figure 3 the calibration of the income levels or of the transition rates yields

distribution of estimates for α and δ that are unimodal and at the same time do not affect

the accuracy with which γ can be identified. Hence, allowing α and δ to interact with some

of the income parameters during the estimation process provides a better identification.

Note, however, that fixing the values for the income levels provide the best results in terms

of bias reduction, correct identification, and reduced variability of parameter estimates.

In general, our calibration experiments point towards a strategy based on calibrating

parameters that are weakly identified, as indicated by the KL divergence. This includes

the income levels or the coefficient of relative risk aversion. However, this approach

may not carry any improvement in the identification and estimation accuracy of the ML

estimator if the calibrated values happen to be different from those in the population.

Similar concerns have been raised previously in the context of linearized representative

agent models (see Canova and Sala, 2009). Therefore, we investigate if our previous re-

sults are sensitive to mis-calibration. In particular, we consider the effects of calibrating
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TABLE 5
Conditional estimates: alternative data generating process. The table reports the Mean Ab-
solute Normalized Error (MANE) and the Median Normalized Bias (MNB, in parenthesis)
from a Monte Carlo experiment with M = 200 samples, each of size N = 5,000, gen-
erated under alternative data generating process. In particular, ∆e larger uses eh = 1.5
and el = 0.1; ∆e smaller uses eh = 0.5 and el = 0.1; γ higher uses γ = 2.0; and
γ lower uses γ = 0.5. The ML estimation uses data on individual wealth and income.

Wealth and income

∆e larger ∆e smaller ∆e = 0.8 γ higher γ lower γ = 1.0

K/Y 0.2434
(0.236)

0.3732
(−0.378)

0.0358
(0.021)

0.2888
(−0.283)

0.2631
(−0.275)

0.3081
(−0.299)

Interest rate 0.3008
(−0.278)

0.9752
(1.002)

0.2841
(−0.255)

0.5798
(0.604)

0.4342
(0.462)

0.3740
(0.169)

Savings rate 0.1717
(0.134)

0.1410
(0.118)

0.1149
(0.029)

0.1394
(−0.055)

0.1916
(−0.194)

0.1969
(−0.200)

Gini Coeff. 0.0550
(−0.055)

0.1204
(0.123)

0.0398
(−0.040)

0.0403
(−0.040)

0.0206
(0.021)

0.0396
(−0.039)

Bottom 50% 0.0507
(0.051)

0.1028
(−0.105)

0.0387
(0.038)

0.0368
(0.036)

0.0187
(−0.019)

0.0386
(0.038)

Top 10% 0.0390
(−0.040)

0.1088
(0.111)

0.0248
(−0.025)

0.0288
(−0.028)

0.0153
(0.015)

0.0243
(−0.025)

the risk aversion coefficient, γ, and the labor efficiency gap, ∆e, to the values in Table 1

when in reality the true DGP is characterized by higher or lower values.

Table 5 reports the results from a Monte Carlo simulation with M = 200 samples of

wealth and income, each of size N = 5,000. Due to the non-linear dependences among all

structural parameters of the model, we report the MANE and MNB for some of the key

macroeconomic statistics implied by the model. In particular, we analyze the effects of

a higher and lower income level gap and relative risk aversion on the steady state levels

of the capital-output ratio, K/Y , of the interest rate, r, of the aggregate savings rate,

(1− C/Y ), of the Gini coefficient, and of the Lorenz curve10. For comparison, the table

also reports the case where ∆e and γ are calibrated to the values in Table 1.

The mis-calibration of the income levels can have a substantial impact on the ac-

curacy with which the implied aggregate statistics can be estimated, and thus lead to

wrong inferences. In particular, we find that a calibrated income gap that is higher than

its value in the population leads to considerable biases in the steady state capital-output

ratio, the steady state interest rate and the overall implied wealth distribution. On the

10Similar statistics for all the Monte Carlo simulations described in the paper are available upon
request.
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other hand, the mis-calibration of the coefficient of relative risk aversion has a negligible

effect on the implied macroeconomic quantities. This result is consistent with the fact

that the shape of the wealth distribution is not sensitive to changes in γ, as suggested by

the KL divergence, and documented in Figure 1.

In summary, our Monte Carlo evidence suggests that ρ, α and δ can be identified and

accurately estimated with the use of cross-sectional data on individual wealth and income

by means of our proposed ML estimator. On the other hand, the coefficient of relative

risk aversion and the parameters describing the exogenous income process display some

identification challenges that may lead to inferential problems that persist even in large

samples. Following standard practice in macroeconomics, we find that a mixed strategy

where a subset of the troublesome parameters is calibrated provides a considerable im-

provement in terms of statistical precision without affecting the overall results. Given

the inherent uncertainty around the correct parameter values to use in the calibration,

the results suggest that fixing the value of the relative risk aversion, and not the income

levels, provides the best finite sample performance of the ML estimator.

6. Empirical illustration

This section provides an empirical illustration of our likelihood approach by estimating

the parameters of the Bewley-Hugget-Aiyagari model of Section 2 for the U.S. economy

using the wealth and wage income data reported in the Survey of Consumer Finances

(SCF) for the year 2013.

To accommodate the high degree of wealth inequality observed in the data, we ex-

pand the number of labor efficiency states in the prototype economy to four so that

the endowment process now follows a continuous-time Markov chain with state space

E = {e1, e2, e3, e4}, with e1 < e2 < e3 < e4, that evolves over time according to

det =
∑
i

∑
j ̸=i

(ei − ej) dqij,t, e0 ∈ E .

The Poisson processes qij,t for all i, j = 1, . . . 4 and i ̸= j count the frequency with which
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an agent moves from state i to state j. Associated with each efficiency level, we define

ϕij ≥ 0 to be the instantaneous transition rate from state i to state j. Since individuals

cannot transit to state i while currently being in the same state, it follows that ϕii = 0,

for all i = 1, . . . , 4.

The estimation sample includes data on households with positive net worth and pos-

itive income (per hundred thousand) in order to be consistent with the model’s non-

negative borrowing constraint. The wealth data corresponds to the net-worth reported

in the Summary Extract Public Data provided by the SCF. To obtain an equally weighted

sample of household wealth, we resample the net-worth data using the weights provided

by the SCF. The wage income data is recoded into four discrete states, where each state

corresponds to income levels belonging to one of the following pre-defined quantile bins:

0-25, 25-50, 50-99, 99-100. The unequal spacing of the quantile bins tries to accommodate

the high degree of income inequality in the data11. The final sample includes N =18,631

individuals.

The model’s solution is approximated on a grid for wealth containing I = 500 equally

spaced points. The resulting (negative) log-likelihood function is then minimized us-

ing a GlobalSearch algorithm with 1000 random trial points. We use a non-parametric

bootstrap to compute confidence intervals for the parameter estimates using M = 100

bootstrap samples12. Following the Monte Carlo evidence of Section 5, we do not at-

tempt to estimate the coefficient of relative risk aversion, γ. Instead, we calibrate it to

1.0 and estimate all the remaining parameters. Alternative calibrations result in lower

log-likelihood values.

Table 6 reports the maximum likelihood estimates together with their 95% confi-

dence intervals. In Panel A we present the results for the preference parameters, in

Panel B for the income or labor efficiency levels, and in Panel C for the intensity rates

associated with each of the count processes that describe the idiosyncratic income dy-

namics in the economy. Panel D reports the corresponding limiting distribution defined

11Using equally spaced quantile bins will produce much smaller overall estimates of the actual wealth-
income inequality.

12The bootstrapping exercise is computationally demanding. Estimation with M = 100 samples takes
about 58 hours on a dedicated 32 cores Xeon server.
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TABLE 6
Maximum likelihood estimates. The table reports the maximum likelihood estimates (MLE)
of the model parameters and their 95% confidence intervals computed from a non-parametric
bootstrap with M = 100 samples. The estimation sample contains N =18,631 observations on
individual wealth and income. The coefficient of relative risk aversion is calibrated to γ = 1.0.

Panel A: Preference parameters

Parameter γ ρ α δ

Value 1.0 0.1120
[0.1077, 0.1138]

0.5601
[0.5507, 0.5624]

0.0306
[0.0256, 0.0349]

Panel B: Income levels, ei

Parameter e1 e2 e3 e4

Value 0.1130
[0.1129, 0.1329]

0.1164
[0.1161, 0.1371]

0.2586
[0.2450, 0.2653]

5.2823
[4.9703, 5.4561]

Panel C: Intensity rates, ϕij (× 100)

i\j 1 2 3 4

1 0 0.0006
[0.0005, 0.0008]

0.2275
[0.2119, 0.2480]

0.3055
[0.2334, 0.3073]

2 0.1427
[0.1089, 0.1503]

0 0.0001
[0.0001, 0.0002]

0.2128
[0.1859, 0.2452]

3 0.2045
[0.1686, 0.2124]

0.1842
[0.1653, 0.1972]

0 0.0000
[0.0000, 0.0000]

4 0.0012
[0.0010, 0.0016]

0.0013
[0.0008, 0.0015]

38.9288
[37.8903, 43.2152]

0

Panel D: Stationary probabilities (%)

p (ei) 25.50
[24.78, 26.15]

25.34
[24.76, 26.10]

48.83
[47.94, 49.26]

0.34
[0.28, 0.34]

as p (ei) ≡ limt→∞ p (ei, t), where p (ei, t) denotes the unconditional probability of being

in state ei at time t. Our estimates capture a considerable and persistent degree of in-

come inequality as suggested by the extreme estimate for e4 in Panel C which is nearly

50 times the average income of the least efficient individual. It also suggests that the

most productive households are about 20 times more productive than the second most

productive households. With respect to the preference parameters in Panel A, we find

that while the estimates for the discount rate and the capital share of output are some-

what above the values usually reported in the literature, the estimate for the depreciation

rate is below. The estimates of the stationary probabilities closely match the allocation

of households into the different income bins: the mass of agents in the first and second

income/efficiency level is about 25%, the mass in the third level close to 50%, and finally,

the mass of agents with extremely high-income levels does not exceed 1%

Finally, Table 7 compares some wealth statistics and macroeconomic aggregates to
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TABLE 7
Wealth inequality and macroeconomic aggregates: data vs. model. The table re-
ports the observed and estimated Gini coefficient, the distribution of wealth across
top percentiles, the capital-output ratio, the interest rate, and the savings rate.
It also reports 95% confidence intervals computed from a non-parametric bootstrap.

Gini
Coefficient

% wealth in top Aggregates

5% 10% 20% K/Y Interest
rate

Savings
rate

Data 0.8048 57.73 70.27 83.44 3.1 0.08 0.089

Model 0.7912
[0.7817, 0.7939]

44.30
[42.98, 44.76]

63.82
[62.27, 64.31]

83.57
[82.27, 83.91]

4.1364
[4.0193, 4.2013]

0.1048
[0.1012, 0.1069]

0.1267
[0.1021, 0.1419]

those implied by the estimated model. It reports the Gini coefficient, the percentage of

total wealth held by the top 5, 10 and 20 percentiles, the capital-output ratio, the interest

rate, and the savings rate. The observed values for the wealth statistics are computed

directly from the SCF data used in the estimation. The values for the capital-output

ratio and the real interest rate are those reported in Barro (2021), while the aggregate

savings rate corresponds to the historical average between 1959 and 2022 of the personal

savings rate.

The estimated model can match the data quite well considering the simplistic na-

ture of the model. Similar to previous literature which successfully matches the wealth

distribution by focusing on labor income, our estimates indicate that the data favors

the inclusion of an “awesome state”. In particular, a high degree of income inequality

is needed for the prototype model to generate a skewed wealth distribution. It should

be stressed that we don’t see our results as evidence for this particular income process.

As pointed out in Benhabib and Bisin (2018), the implication of the “awesome state”

in the labor income process is very likely to be a counterfactual to the actual income

data. The estimated income process simply captures all other relevant wealth inequality

driving forces (bequest, entrepreneur risk, explosive wealth accumulation, etc.) that are

not present in our simple model. The estimated parameters of the labor efficiency pro-

cess are mostly likely the key driving force for the high degree of the wealth inequality.

Moreover, it is important to realize that the ability of the ML estimator to match the

empirical data on wealth and income (or some of its moments) should not come as a

surprise due to the one-to-one mapping between the model’s likelihood function and the
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model’s approximated joint probability density function of wealth and income. The fact

that the parameter estimates in Table 6 do not match those usually reported elsewhere in

the literature is indicative that our benchmark model is most likely misspecified13. Lastly,

our results also suggest that the estimated model requires steady-state aggregates that

exceed their observed values for the U.S. economy. In particular, the observed wealth

distribution can only be matched if individuals in the model save a larger fraction of

their income, implying a higher equilibrium real interest rate. As a consequence, the

steady-state capital-output ratio will also be larger.

7. Conclusions

In this paper we introduce a likelihood approach to estimate the structural parameters

of macroeconomic heterogeneous agent (HA) models using microeconomic data. Our ap-

proach makes use of the Fokker-Planck equations that describe the stationary probability

density function of the model which is used to build the likelihood function.

Using a standard Bewley-Hugget-Aiyagari model as the data generating process, we

perform extensive Monte Carlo experiments to study the finite sample properties of the

proposed ML estimator. To investigate its identification power, we propose to use the

Kullback-Leibler (KL) divergence as a tool to determine potential sources of irregular

behavior in the likelihood function before any estimation is conducted.

The simulation results show that the parameters related to the supply side of the

economy and the household’s subjective discount rate can be identified and accurately

estimated with the use of cross-sectional data on individual wealth. On the other hand,

the parameters describing the exogenous income process and the coefficient of relative

risk aversion pose some challenges that materialize in significant biases that persist even

in large samples. The KL divergence indicates that changes in these parameters do not

affect significantly the shape of the wealth distribution, and therefore imply flat likelihood

surfaces in these dimensions of the parameter space. The lack of curvature translates into

13In the Online Appendix we report the estimation results from a modified version of the benchmark
model that includes both income and discount factor heterogeneity along the lines of Krusell and Smith
(1998).
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weakly identified parameters that could lead to incorrect inferences. However, our results

also suggest that including data on individual income in addition to the wealth data can

help to reduce these biases.

Following standard practice, we instead calibrate some of the troublesome parameters

and estimate all remaining ones. Simulation evidence suggest that this approach delivers

significant improvements over the unrestricted ML estimation. However, given the risk of

mis-calibrating some of these parameters, our results favor fixing the risk aversion coeffi-

cient over any of the income parameters. To illustrate our approach, we provide a small

empirical application in which we estimate the parameters of an extended version of our

benchmark Bewley-Hugget-Aiyagari model using household data on wealth and income

from the Survey of Consumer Finances. Despite the simplistic nature of the model, our

estimates match the data quite well as measured by the implied Gini coefficient and the

distribution of wealth across top percentiles.

Our results are encouraging and suggest an important role for likelihood-based meth-

ods in HA models. The increased quality and quantity of micro data should direct

future research towards more elaborated models, like those studied in Krusell and Smith

(1998), Cagetti and De Nardi (2006), Angeletos and Calvet (2006), Angeletos (2007) and

Benhabib et al. (2011), among others, or more realistic income processes like those in

Achdou et al. (2014) and Gabaix et al. (2016). The ML approach introduced here could

then be extended by using the approximated solution to the time-varying Fokker-Plank

equation instead of its stationary version. However, this will impose some computational

challenges that need to be addressed if one wishes to continue using the entire cross-

sectional data as done here. A potential way to overcome this difficulties is to use some

dimensionality-reduction technique similar to those introduced in the recent HANK liter-

ature (see e.g., Bayer and Luetticke, 2020, Papp and Reiter (2020), Auclert et al. (2021),

Liu and Plagborg-Møller, 2021, among others). This will help to extend the information

set used in the estimation process, e.g., repeated cross-sections or panel data, potentially

increase the identification power of the structural parameters, and eventually provide a

better fit of the wealth distribution.
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Khieu, H. and K. Wälde (2019): “Capital Income Risk and the Dynamics of the

Wealth Distribution,” CESifo Working Paper Series 7970, CESifo Group Munich.

Komunjer, I. and S. Ng (2011): “Dynamic Identification of Dynamic Stochastic Gen-

eral Equilibrium Models,” Econometrica, 79, 1995–2032.

Krusell, P. and A. A. Smith (1998): “Income and Wealth Heterogeneity in the

Macroeconomy,” Journal of Political Economy, 106, 867–896.

Kullback, S. (1959): Information Theory and Statistics, John Wiley and Sons Inc.

Kullback, S. and R. A. Leibler (1951): “On Information and Sufficiency,” The

Annals of Mathematical Statistics, 22, 79–86.

Kydland, F. E. and E. C. Prescott (1982): “Time to Build and Aggregate Fluc-

tuations,” Econometrica, 50, 1345–1370.

Light, B. (2020): “Uniqueness of Equilibrium in a Bewley-Aiyagari Model,” Economic

Theory, 69, 435–450.

36



Liu, L. and M. Plagborg-Møller (2021): “Full-Information Estimation of Hetero-

geneous Agent Models Using Macro and Micro Data,” mimeo.

Luo, M. and S. Mongey (2019): “Assets and Job Choice: Student Debt, Wages and

Amenities,” Working Paper 25801, National Bureau of Economic Research.

McCulloch, R. E. (1989): “Local Model Influence,” Journal of the American Statis-

tical Association, 84, 473–478.

Mongey, S. and J. Williams (2017): “Firm Dispersion and Business Cycles: Esti-

mating Aggregate Shocks Using Panel Data,” Unpublished.

Mumtaz, H. and F. Zanetti (2015): “Factor Adjustment Costs: A Structural Inves-

tigation,” Journal of Economic Dynamics and Control, 51, 341–355.

Newey, W. K. and D. McFadden (1986): “Large Sample Estimation and Hypothesis

Testing,” in Handbook of Econometrics, ed. by R. F. Engle and D. McFadden, Elsevier,

vol. 4 of Handbook of Econometrics, chap. 36, 2111–2245.

Ozkan, S., K. Mitman, F. Karahan, and A. Hedlund (2016): “Monetary Pol-

icy, Heterogeneity and the Housing Channel,” 2016 Meeting Papers 663, Society for

Economic Dynamics.

Papp, T. K. and M. Reiter (2020): “Estimating Linearized Heterogeneous Agent

Models using Panel Data,” Journal of Economic Dynamics and Control, 115.

Prescott, E. C. (1986): “Theory Ahead of Business Cycle Measurement,” Carnegie-

Rochester Conference Series on Public Policy, 25, 11–44.

Qu, Z. and D. Tkachenko (2012): “Identification and Frequency Domain Quasi-

Maximum Likelihood Estimation of Linearized Dynamic Stochastic General Equilib-

rium Models,” Quantitative Economics, 3, 95–132.

——— (2017): “Global Identification in DSGE Models Allowing for Indeterminacy,”

Review of Economic Studies, 84, 1306–1345.

37



Reiter, M. (2009): “Solving Heterogeneous-Agent Models by Projection and Perturba-

tion,” Journal of Economic Dynamics and Control, 33, 649–665.
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