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Abstract

Using a Bewley-Hugget-Aiyagari model we show how to use the Fokker-Planck
equation for likelihood inference in heterogeneous agent (HA) models. We study
the finite sample properties of the maximum likelihood estimator (MLE) in Monte
Carlo experiments using cross-sectional data on wealth and income. We use the
Kullback-Leibler divergence to investigate identification problems that may affect
inference. Unrestricted MLE leads to considerable biases of some parameters. Cal-
ibrating weakly identified parameters is shown to be useful to pin down the remain-
ing structural parameters. We illustrate our approach by estimating the model for
the U.S. economy using the Survey of Consumer Finances.
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1. Introduction

Heterogeneous agent (HA) models have become an extensively used tool for the study
and evaluation of macroeconomic policies and welfare implications. They have been used
to address questions related to social security reforms, the precautionary savings behavior
of agents, employment mobility and wealth inequality. A comprehensive review of the
developments made in the field of HA models during the last three decades can be found
in Rios-Rull (1995, 2001) and Heathcote et al. (2009). More recently, they have been
used for the study of the distributional implications of monetary and fiscal policies (see
Ozkan et al., 2016; Holm, 2022; Kaplan et al., 2018; Wong, 2021).

Currently, the main workhorse of household heterogeneity is based on the models by
Bewley (Undated), Huggett (1993) and Aiyagari (1994). Their theories are motivated
by the empirical observation that individual earnings, savings, wealth, and labor exhibit
much larger fluctuations over time than per-capita averages, and accordingly significant
individual mobility is hidden within the cross-sectional distributions. These ideas have
been formalized with the use of dynamic and stochastic general equilibrium models of a
large number of rational consumers that are subject to idiosyncratic income fluctuations
against which they cannot fully insure due to market incompleteness.

The standard approach to study the quantitative properties of these models is based
on the calibration of their structural parameters. Hence, the parameter values are either
fixed to those for which there exists a wide consensus in the literature, or chosen in such
a way that they minimize the distance between a subset of moments obtained from the
model and the same moments computed from the data, or by a combination of both. Ac-
cordingly, calibration can be classified as a partial or limited information approach in the
sense that it only makes use of a subset of the model cross-equation restrictions. Kydland
and Prescott (1982) introduced calibration into macroeconomics with subsequent devel-
opments made by Prescott (1986), Cooley and Prescott (1995) and Gomme and Rupert
(2007). Recent examples that combine both types of calibration approaches, conditional

on estimated values for the exogenous income process, can be found in Benhabib et al.

(2019), Luo and Mongey (2019), Abbott et al. (2019).



On the other hand, full information methods which rely on the entire probability
distribution of the model have received less attention. Given the increased quality and
quantity of household data, the first contribution of this paper is to introduce a likeli-
hood framework that can be used to estimate the structural parameters of HA models
using the information content on a sample of cross-sectional data, x;. The approach
proposed here uses the fact that any HA model with parameter vector 8 induces a joint
distribution of idiosyncratic state variables with probability density function g(@) that
can be used to compute the likelihood of the data, ) .logg(@ | x;). In this paper, we
rely on the ability to compute the model’s implied stationary probability density func-
tion which can be later used to build the likelihood function of the model. Hence, our
approach applies exclusively to the estimation of structural parameters that affect the
steady state of macroeconomic aggregates from microeconomic data. Using a standard
Bewley-Hugget-Aiyagari, we show how to combine the time-invariant equilibrium joint
probability distribution of wealth and income with a sample of observations on individ-
ual’s wealth and labor status to estimate different subsets of structural parameters of the
model, e.g., household preferences, production technology, and/or idiosyncratic income
dynamics. Likelihood-based methods provide a natural point for the investigation of
efficiency and identification properties to the extent that the commonly used partial in-
formation methods, like the simulated method of moments (SMM), only rely on a subset
of the full information provided by the likelihood function. Hence, the full information
approach allows the econometrician: (i) to assess the uncertainty surrounding the param-
eter values which ultimately provides a framework for inference and hypothesis testing,
and (ii) to use standard tools for model selection and evaluation.

In general, the computation of the probability density function of the state variables
in HA models is not straightforward as it turns out to be a complicated endogenous and
nonlinear object that usually has to be numerically approximated either by Monte Carlo
simulation or functional approximation techniques (see Heer and Maussner, 2009). More
recently, Bayer and Wélde (2010a,b, 2011), Achdou et al. (2014), and Gabaix et al. (2016)

have suggested the use of Fokker-Planck equations, also known as Kolmogorov’s Forward



equations, for the analysis of endogenous distributions in macroeconomics. These par-
tial differential equations (PDEs) describe the entire dynamics of any probability density
function in a very general manner without the need to impose any particular functional
form. When combined with the Hamilton-Jacobi-Bellman equation that describes the
optimal consumption-saving decisions of economic agents, they form a system of coupled
PDEs that can be numerically solved with high degree of accuracy and computational
efficiency on the entire state-space of the model using the finite difference methods in
Candler (1999) and Achdou et al. (2022).

A condition for the maximum likelihood (ML) estimator to deliver consistent esti-
mates of the model parameters, and for valid asymptotic inference is identification (see
Newey and McFadden, 1986). Roughly speaking, identification refers to the fact that the
likelihood function must have a unique maximum at the true parameter vector and at
the same time display enough curvature in all its dimensions. Lack of identification leads
to misleading statistical inference that may suggest the existence of some features in the
data that are in fact absent. Therefore, it is important to verify the identification con-
dition prior to estimation'. The recent contributions of Canova and Sala (2009), Iskrev
(2010), Komunjer and Ng (2011), Qu and Tkachenko (2012), and Rios-Rull et al. (2012)
point out in that direction by providing tools that can be used to assess the identifiability
of parameters in structural macroeconomic models.

The second contribution of this paper is to investigate whether it is possible, and to
what extent, to (locally) identify the structural parameters of heterogeneous agent mod-
els in our likelihood-based framework. Checking for identification in practice is difficult
since the mapping from the structural parameters of the model to the objective function is
highly nonlinear and usually not known in closed form. Therefore, the standard rank and
order conditions in Rothenberg (1971) for linear models cannot be applied. Instead, we
propose to use the Kullback-Leibler (KL) divergence between two distribution functions
(see Kullback and Leibler, 1951, Kullback, 1959 and McCulloch, 1989) to investigate the

identification power of our ML estimator. The KL divergence is computed for the model’s

1See Ireland (2004) and Mumtaz and Zanetti (2015) for an early discussion of potential identification
issues in the estimation of representative agent DSGE models.



implied distribution and hence it is independent of the data. This allows the researcher to
analyze the sensibility of the model’s probability distribution function to changes in the
parameter values even before any estimation takes place. Lack of variability along any
dimension of the parameter space provides an early diagnosis for potential identification
issues. In fact, irregular behavior in the density function found at this stage will impact
the estimator’s objective function and hence limit its ability to accurately identify the
parameters of the model using the likelihood of the data.

The estimation approach proposed in this paper differs from related contributions
by Mongey and Williams (2017), Williams (2017), and Winberry (2018). They employ
Bayesian-likelihood methods to estimate the parameters that govern the dynamics of ag-
gregate exogenous macroeconomic shocks, conditional on calibrated values for the prefer-
ence parameters which ultimately depend on the cross-sectional stationary distribution of
individual states. Therefore, their statistical methods do not make any use of the model’s
implied probability density function. Challe et al. (2017) extend this approach by includ-
ing a subset of the preference parameters in the estimation step and hence some knowledge
of the cross-sectional probability density function is in principle required. However, in
their quantitative exercise they collapse the model’s density function to a single mass point
and therefore do not make use of the entire distribution function in the estimation process.

More recently, Bayer et al. (2020) make use of Bayesian methods to estimate the
dynamics of the aggregate shocks and frictions in a New Keynesian HA model (HANK),
while calibrating most of the structural parameters. Using the solution method in Reiter
(2009) and Bayer and Luetticke (2020), the likelihood function of the linearized model is
computed via the Kalman filter. They estimate the model using both data on macroe-
conomic aggregates together with cross-sectional information in the form of snapshots
of the cross-sectional distribution, but not the entire cross-sectional distribution of the
individual’s state variables. A similar approach is followed by Auclert et al. (2021) using
the moving average representation implied by the sequence-space Jacobian method. On
the other hand, Fernandez-Villaverde et al. (2020) use continuous-time methods in order

to exploit the Fokker-Planck equation that describes the time evolution of the probability



density function of aggregate macroeconomic variables in a non-linear HANK model. Us-
ing quarterly data on aggregate output in the U.S., they estimate the volatility parameter
of the aggregate exogenous shock conditional on the calibrated values of all the remaining
parameters. Unfortunately, the paper is silent about including microeconomic data in the
estimation. In general, the existing frameworks only exploit the information content of
macroeconomic aggregates in addition to some cross-sectional information in the form
of summary statistics. In contrast, in this paper we use of the information available in
the entire cross-sectional distribution of microeconomic data to estimate parameters that
enter directly in the computation of the steady state of the economy. Closer to our ap-
proach is the work by Papp and Reiter (2020) and Liu and Plagborg-Mgller (2021). They
develop likelihood-based methods to estimate the parameters of HA models using simul-
taneously macroeconomic time series and microeconomic data in the form of snapshots
(moments) of either repeated cross-sections or panel data. However, both papers only
provide proof-of-concept examples where the focus is on a reduced number of parameters
affecting primarily the exogenous processes of idiosyncratic states.

The rest of the paper is organized as follows. Section 2 shows how to compute the
model’s likelihood function from the stationary joint density function that solves the
model’s Fokker-Planck equation. To illustrate our approach, we introduce a Bewley-
Hugget-Aiyagari model in which a large number of households face idiosyncratic and
uninsurable income risk in the form of exogenous shocks to their labor productivity. We
characterize and solve for the stationary competitive equilibrium which equip us with a
time-invariant joint probability distribution of wealth and income for estimation and/or
identification purposes. While our framework can be easily extended to include cross-
sectional data on a number of additional endogenous variables, e.g., individual consump-
tion, our general equilibrium approach limits this possibility unless additional features
such as measurement errors are considered.

Section 3 examines the finite sample properties of the MLE using a Monte Carlo ex-
periment. We identify potential biases and the precision of the estimates along different

dimensions of the parameter space. Our results suggest that estimating the complete



set of parameters using cross-sectional data on income and wealth leads to considerable
biases on the parameters describing the HA income process, but also on other parameters
such as the coefficient of relative risk aversion. As a negative result, the biases in these
parameters persists in large samples and their distributions tend to be wide and skewed.
In Section 4 we compute the KL divergence associated to the model’s implied distribu-
tion function and find that the poor performance of the MLE can be explained by the
insensibility of the wealth-income distribution to changes in this subset of parameters.
On the other hand, we find that cross-sectional data is informative for parameters related
to the supply side, like the capital share in output and the depreciation rate.

A standard practice in applied macroeconomics when identification problems arise
is to fix the parameters that are believed to be unidentifiable to arbitrary values and
estimate the remaining ones. In Section 5 we investigate the consequences of following
such a strategy and find that even in cases where some parameters are mis-calibrated
the MLE, conditional on some parameters being calibrated, improves the finite sample
properties of the parameters being estimated. Section 6 provides an empirical illustration
of our proposed framework by estimating the parameters of a Bewley-Hugget-Aiyagari
model for the U.S. economy using individual data on wealth and income from the 2013

Survey of Consumer Finances. Section 7 concludes.

2. Structural estimation

While there is a broad consensus on the importance of heterogeneity in macroeconomics,
there is less agreement on how these models should be taken to the data. In this section
we show how to estimate the structural parameters of heterogeneous agent models using
full information methods on a sample of cross-sectional data. We use the fact that any HA
model with parameter vector @ induces a joint distribution of idiosyncratic state variables
with stationary probability density function g(@) that can be used to compute the likeli-
hood of the data. As shown below, our approach makes use of the model’s Fokker-Planck

equation to approximate the stationary probability density function of the state variables.



More specifically, let {x;}, be a sample of N i.i.d observations of the state variables.

Then, the log-likelihood function of any HA model can be computed as

LN<0|x>=Zlogg<x|e>, (1)

where 8 € ® C RM is the M x 1 vector of structural parameters, and where © is the

parameter space, assumed to be compact. The ML estimator, Oy is defined as

Oy = argmax Ly (0 | x1...,Xy). (2)
0O

A prototypical heterogeneous agent model

To show how the estimation approach works, we consider a prototypical HA model d la
Bewley-Hugget-Aiyagari as in Achdou et al. (2022). In our economy there is no aggregate
uncertainty, and we assume that all aggregate variables are constant and equal to their
steady-state values, while at the individual level households face idiosyncratic uninsurable

risk and variables change over time in a stochastic way.

Households

Consider an economy with a continuum of unit mass of infinitely lived households where
decisions are made continuously in time. Each household consists of one agent, and we
will speak of households and agents interchangeably. Household i, with ¢ € (0, 1), has

standard preferences over streams of consumption, ¢;, defined by

Up = EO/ e Pu(c;)dt, (3)
0

where p > 0 is the subjective discount rate, and where the instantaneous utility function
is given by

“(e) = ¢ J(1=7) fory#1

log (¢;) for v = 1.



Here, v > 0 denotes the coefficient of relative risk aversion (or the inverse of the elasticity
of intertemporal substitution, EIS). At time ¢ = 0, the agent knows his initial wealth and

income level and chooses the optimal path of consumption {¢;}$°, subject to

da; = (ra; +wey — ¢;)dt, ag € A, (4)

where a; € A C R denotes the household’s wealth per unit of time and r the interest rate.
Wealth increases if capital income, ra;, plus labor income, we;, exceeds consumption, ¢;.
At every instant of time, households face uninsurable idiosyncratic and exogenous shocks
to their endowment of efficiency labor units, e; € £, making their labor income stochastic
(see Castaneda et al., 2003). Finally, w denotes the wage rate per efficiency unit which
is the same across households and determined in general equilibrium together with the
interest rate.

Following Huggett (1993), the endowment of efficiency units can be either high, e,
or low, e;. The endowment process follows a continuous-time Markov Chain with state

space € = {ep, ¢;} described by

de; = —Acdqrs + Aedgay, Ac=ep—e and e €€, (5)

where A, can be interpreted as the labor efficiency gap. The Poisson process ¢ ; counts
the frequency with which an agent moves from a high to a low efficiency level, while the
Poisson process g2, counts how often it moves from a low to a high level. As an individ-
ual cannot move to a particular efficiency level while being in that same level, the arrival
rates of both stochastic processes are state dependent. Let ¢y (e;) > 0 and ¢9 (¢;) > 0

denote the demotion and promotion rates respectively, with

On e =ep 0 e=ey
¢1(€t) = , and ¢2(€t) =

0 e =g O e = ey

Finally, households in this economy cannot run their wealth below a, where a" <

a <0, and a" = —we;/r defines the natural borrowing constraint implied by the non-



negativity of consumption. Hence, A = [a, o).

Production possibilities and macroeconomic identity

Aggregate output in this economy, Y, is produced by identical firms owned by the house-
holds. The representative firm combines aggregate capital, K, and aggregate labor, L,
through a constant return to scale production function Y = KL~ with a € (0,1), to
maximize its profits.

We assume that the aggregate capital stock in the economy depreciates at a constant
rate, 0 € [0, 1]. Since our focus is on the steady state, all the investment decisions in the
economy are exclusively directed towards replacing depreciated capital. Therefore, the
macroeconomic identity

Y =C+ 0K (6)

holds V¢, where C' and 0K denote, respectively, aggregate consumption and aggregate
investment. We have removed the temporal subscript ¢ from all aggregate variables to

indicate that the economy is in a stationary equilibrium?.

Equilibrium

In this economy, households face uncertainty regarding their future level of labor effi-
ciency. This makes their labor income and wealth also uncertain. Hence, the state of the
economy at instant ¢ is characterized by the wealth-income process (a;, ¢;) € AXE defined
on a probability space (€2, F,G) with associated joint density function g (a, e, t). In a
stationary equilibrium the density function is independent of time and thus it simplifies
to g (ay, ep).

Households. For any given values of r and w, the optimal behavior of each of the

households in the economy can be represented recursively from the perspective of time ¢

2Introducing a time series dimension at the aggregate level through an aggregate productivity shock
is straightforward from a modeling perspective (see Ahn et al., 2017). However, this increases the
computational time dramatically making any extensive Monte Carlo investigation infeasible.



by the Hamilton-Jacobi-Bellman equation (HJB)

pV (a,e) = max {u(c) + Va(a,e)(ra + we — ¢)

ceRt

+ (V(a, ) = V(a, en))dr(e) + (V(a, en) = Va, 61))¢2(€)}7 (7)

where V (a,e) denotes the value function of the agent®. The first-order condition for an
interior solution reads

u'(¢) = Va(a,e) (8)

for any t € [0, 00), making optimal consumption a function only of the state variables
and independent of time, ¢ = ¢(a, e).
Due to the state dependence of the arrival rates, only one Poisson process will be active

for each of the values in £. This leads to a bivariate system of maximized HJB equations

pVia,e) = ulcla,e))+ Vila,e)(ra+ we, — cla,e)) + (V(a,en) — V(a,e))pim, (9)

pVia,en) = wulcla,en)) + Vala,ep)(ra+ wey, — cla,en)) + (V(a,e) — Va,en))phl0)

As argued in Achdou et al. (2022), Equation (8) holds for all @ > a since the bor-
rowing constraint never binds in the interior of the state space. Therefore, the system of
equations formed by (9) and (10) does not get affected by the existence of the inequality
constraint @ > a, and instead gives rise to a state-constraint boundary condition that
ensures that the borrowing constraint is never violated.

Firms. The representative firm rents capital and labor from the households in per-
fectly competitive markets. Hence, in equilibrium the production factors are paid their

respective marginal products

r=aK* L' ~§ and w=(1-a)K*L™°, (11)

3A complete derivation of the HIB equation, the Fokker-Planck equations that described the subden-
sity functions of wealth, and the stationary probability distributions of the efficiency endowments can
be found in the Online Appendix.
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where K =37 o f;o ag(a,e)daand L = 37 (o f;o eig (a,e)da. This form of
aggregation provides a link between the dynamics and randomness that occurs at the
micro level with the deterministic behavior at the macro level.

Distribution of endowments and wealth. Given its dependence on one continuous ran-
dom variable and one discrete random variable, the stationary joint density function,
g (a,e), can be split into g (a,e,) and g (a,e;). Following Khieu and Wélde (2019), we
refer to these individual probability functions as subdensities. For each e € £, it follows

that g (a,e) = g (a | e)p(e), implying that

/ g(ae)da = ple), (12)

where p(e) = limy_,o, P (e; = €) is the stationary probability of having an efficiency en-

dowment equal to e. Then, the (marginal) stationary density function of wealth is

g (a> =49 (CL, eh) +9 (CL, €l> . (13)

Given our two state Markov process for the endowment of labor efficiency units it is

possible to show that its stationary distribution is given by

__om __9m
plen) = Oni + din’ and p (er) = bni + b (14)

Let s (a,e) = ra+ we — ¢ (a, e) denote the optimal savings function for an individual
with an efficiency endowment equal to e € £. The subdensities in (13) correspond to the
solution of the following non-autonomous quasi-linear system of differential equations

known as (stationary) Fokker-Planck equations

s (a,ep) %g (a,e) = — (r — %c(a, e) + qblh> g(a,e) + dng(a,en), (15)
s (a,ep) %g (a,ep) = — (r — %c (a,epn) + ¢hl> g (a,en) + g (a,e), (16)

where the partial derivatives with respect to wealth describe the cross-sectional dimen-
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sion of the density function. The system of equations formed by (15) and (16) takes
as given the optimal policy functions for consumption. This feature creates a recursive
structure within the model that facilitates its solution: households and firms meet at the
marketplace and make their choices taking prices as given. Prices in turn are determined
in general equilibrium and hence depend on the entire distribution of individuals in the
economy. Such distribution is determined by the optimal choices of households and the
stochastic properties of the exogenous shocks.

Equilibrium. A stationary equilibrium is defined as a situation where the aggregate
variables and prices in the economy are constant, the joint distribution of wealth and
income is time-invariant, and all markets clear. More specifically, while the distribution
of wealth is constant for both the low and high efficiency workers and the number of
low and high efficiency workers is also constant, the households are not characterized by
constant wealth levels and efficiency status over time. Achdou et al. (2022) show that
such stationary equilibrium is unique if the EIS is greater or equal than one, i.e. 1/ > 1.
Closely related results for the case of discrete-time economies have been shown in A¢ikgoz
(2018) and Light (2020).

The solution of our prototype economy is not available in closed form. Therefore, for
a given set of parameter values, the stationary competitive equilibrium is numerically
approximated on a discretized state space for A using the finite-difference approaches in
Candler (1999) and Achdou et al. (2022). A detailed description of the algorithm and its

implementation can be found in the Online Appendix.

The likelihood function

Let {x;}Y, = {a;,e;}Y, = {a1,e1...,an,ex} be asample of N i.i.d observations on indi-
vidual wealth and income, respectively. Then, the log-likelihood function of the prototype

model can be computed as

Ly(0|ae)= Zlogg (a;,e; | 0). (17)
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Alternatively, by using identity (13), it is possible to obtain the marginal density of
wealth as g (a; | 0) = g (a;,e; | @) + g (a;, e, | 0) for each i = 1,..., N. Therefore, in situ-
ations where only data on individual wealth is available, we can rewrite the log-likelihood

function as

Ly(0]a)= Zlogg(ai | 6). (18)

In practice, the ML estimation is carried out by means of an iterative procedure
that requires solving the model for different values of the parameter vector 6. At each
iteration, the model is solved on the discretized state-space A x & as described in the
Online Appendix. While the efficiency lattice only takes two possible values, € = {e;, e},
the wealth lattice is discretized using I < N points on a partially ordered set defined
by A = [min (a),max (a)]. Once the joint density function of wealth and income has
been approximated, the log-likelihood function is constructed in two steps: (i) For each
pair (a;,e;) € a X e, we use a piece-wise linear interpolation to evaluate g (a;, e; | 8); (ii)
Once g (a;, e; | @) has been evaluated for all (a;,e;) € a x e, the log-likelihood function is

computed using (17)*.

3. Finite sample properties

This section uses Monte Carlo simulations to investigate the properties of the ML es-
timator in finite samples by estimating the model of Section 2 on artificially generated
data of individual wealth and individual income (labor efficiency). More precisely, and
since that @ shapes the stationary distribution of wealth and income, we are interested in
investigating whether the stationary distribution of wealth and income contains relevant
information in finite samples about the full set of parameters in the HA model. Similar
to many equilibrium models, estimates are often ill-behaved, so we study identification

problems in Section 4 and/or assess the finite sample performance of the ML estimator

4In terms of implementation, our approach is similar to that proposed in Young (2010) for discrete-
time models: (i) no use of simulation-based methods to approximate the model’s density function, and
(ii) the approximated density resembles a histogram along the state space. However, the weights given
to each point in the histogram are different in both approaches. In particular, our method uses the
cross-equation restrictions imposed by the equilibrium HJB and Fokker-Planck equations and does not
require a dense and uniformly state-space grid to approximate the model’s density.
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under different subsets of restrictions on the parameters.

The parameter values for the data generating process (DGP), 8y, are provided in
Table 1. In the model, time is measured in years and parameter values should be inter-
preted accordingly. To ensure the existence of a unique stationary equilibrium we assume
an economy with unitary EIS. The labor efficiency process is set to match the long run
employment-unemployment dynamics of the US economy. Following Shimer (2005), the
promotion rate is calibrated to match a monthly average job finding rate of 0.45, and
the demotion rate is calibrated to match a monthly average separation rate of 0.034.
The endowment level of high efficiency is normalized to one while that of low efficiency
is set to one-fifth of the one for employed individuals. These values imply a labor effi-
ciency gap, A., of 80%, which is consistent with the values used in Huggett (1993), and
Imrohoroglu (1989) and Krusell and Smith (1998). The transition rates for the Poisson
processes are computed using (14). The remaining parameter values are standard in the
literature, implying the capital-output ratio K /Y = 2.36, the interest rates r = 0.05, and
the aggregate savings rate (1 — C'/Y") = 0.24.

The Monte Carlo experiment is based on M = 200 samples drawn from the model’s
population stationary joint density function g (a, e | 8y), each of them of size N € {1,000,
5,000, 10,000}°. We first sample the two state labor efficiency units using the marginal sta-
tionary distribution in (14). Given the draws on the efficiency units, we then approximate
the population density of wealth, g (a|6), using I = 500 uniform grid points between a =
0 and apyax = 100, from which we sample values of individual wealth using a slice sampler.
For each simulated sample, we proceed to estimate the model’s full parameter set using the
maximum likelihood estimator using only data on wealth, as well as data on both wealth
and income. The numerical maximization of the log-likelihood function is carried out by
means of a Global Search algorithm with 250 initial stage points and 500 trial points.

Table 2 summarizes the results. For each parameter § € 0, it reports: (i) the Median
Normalized Bias, MNB = median{ (6,, — o) /6o }; and (ii) the Mean Absolute Normalized
Errors, MANE = (1/M) Y2, |(6m — 60)/80]. We report normalized metrics to avoid scale

®Each Monte Carlo experiment takes up to 28 hours on a dedicated 32 cores Xeon server.
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TABLE 1
Population parameters, 8g. The exogenous endowment of efficiency units is given by de =
—Acdqr + Acdge, with Ae = e, — e, where g1 and g are Poisson processes with intensity
rates ¢y, and ¢p; respectively. The representative household has standard preferences defined
by Uy = By [[; ePt5=y, (¢) ds| where u(c) = ¢'=7/(1 —~). The macroeconomic identity in
the stationary competitive equilibrium is given by Y = C + 0K, where Y = K*L'=%. In
the model, time is measured in years and parameter values should be interpreted accordingly.

Parameter Value
Relative risk aversion, ~y 1.0000
Rate of time preference, p 0.0490
Capital share in production, « 0.3600
Depreciation rate of capital, § 0.1038
Endowment of high efficiency, ep 1.0000
Endowment of low efficiency, ¢ 0.2000
Demotion rate, ¢ 0.5578
Promotion rate , ¢y, 7.3822

problem when comparing estimates across parameters. Panel A present results when the
only data used in the estimation is individual wealth, while Panel B reports the results
when using data on both individual wealth and income.®

The simulation results reveal that some of the model parameters exhibit large biases
that persist even as the sample size increases. This includes the coefficient of relative
risk aversion, 7, the levels of labor efficiency units, {e;, e}, and their transition rates,
{bin, pri}. In particular, the ML estimates for these parameters imply extremely risk
averse households as well as income levels and transition rates that are larger than their
population values. For example, the average estimate of 7 is between 2 to 7 times larger
than the true value in the population when only data on wealth is used. Similarly, the
average estimate for e; is 4 times larger than in the population for a sample of wealth
and income with N =1,000 observations, 2 times larger for N =5,000, and just below
1 for N =10,000. Moreover, the differences between the (absolute value of) mean and
median biases suggest that the small sample parameter distributions are skewed. This is

particularly the case when both wealth and income data are used in the estimation. On

6Given the two-state nature of income levels in the model we do not attempt to estimate the param-
eters using only data on individual income. In this case, the distribution of income alone will not be
informative about the persistence and transitions of income shocks, (en, €;, din, dni). However, as shown
in Section 4 the distribution of wealth provides information on the persistence parameters. Moreover,
the use of panel data or repeated cross-sections on income could improve the estimation of the income
parameters (see, e.g., Papp and Reiter, 2020 and Liu and Plagborg-Mgller, 2021).
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TABLE 2
Finite sample properties of the ML estimator.  For each 6 € 6, the table reports
the Median Normalized Bias (MNB) and the Mean Absolute Normalized Errors (MANE)
from a Monte Carlo experiment using M = 200 samples, each of size N = {1,000,
5,000, 10,000}. Results in Panel A are based on cross-sectional data on wealth only,
while those in Panel B are based on cross-sectional data on both wealth and income.

MNB MANE MNB MANE MNB MANE
(7] N=1,000 N=5,000 N=10,000
Panel A: Wealth only
o 7.139 6.374 2.399 3.739 3.165 3.754
p 0.056 0.506 -0.058 0.383 0.058 0.303
@ -0.218 0.225 -0.243 0.239 -0.205 0.192
§ 0.118 0.212 0.114 0.189 0.083 0.180
e 4.689 4.337 4.126 3.723 3.651 3.299
en 0.892 0.867 0.926 0.890 0.715 0.719
din 0.071 0.468 -0.093 0.351 0.030 0.282
Oni 0.457 2.004 -0.061 1.547 0.257 1.039
Panel B: Wealth and income

~y 4.028 4.797 0.084 2.297 0.057 1.933
p 0.168 0.431 -0.011 0.312 0.223 0.308
@ -0.205 0.215 -0.229 0.221 -0.138 0.155
§ 0.125 0.200 0.135 0.194 0.091 0.201
e 4.378 4.153 2.016 2.905 0.650 2.114
en 0.940 0.848 0.898 0.858 0.567 0.618
i -0.070 0.417 0.057 0.389 0.120 0.351
bni -0.070 0.449 0.046 0.398 0.139 0.355

the other hand, the biases on the discount rate, p, the capital share in production, «,
and on the depreciation rate, d, are within reasonable ranges, even in small samples’.
In general, increasing the sample size reduces the estimated bias for most of the pa-
rameters. Panel A shows that augmenting the sample size from N=1,000 to N=5,000
observations reduces the MANE of largely biased parameters by around one to three or-
ders of magnitude. For example, the MANE for ~ falls around 70.5% from 6.374 to 3.739,
while the MANE for ¢; and ¢y,; drop 16.5% and 29.5% from 4.337 to 3.723, and from 2.004
to 1.547, respectively. On the other hand, Panel B suggests that using data on both indi-
vidual wealth and individual income generally delivers ML estimates with smaller biases,
and relatively larger bias reductions as a function of the sample size. This is particularly

evident again for 7, e; and ¢p;. However, the additional information brought by the use

"We do not propose to estimate the capital share and/or the depreciation rate from the wealth data
alone rather than from NIPA data. As illustrated by Figures 1 and 2 below even slight variations within
conventional calibrated values of these parameters can have great impact on the wealth distribution.
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of income data has limited effects on the estimation errors and biases for p, o and 4.

4. The Kullback-Leibler divergence

Overall, the finite sample results for the unrestricted ML estimator reveal substantial
differences among parameter estimates that could suggest potential identification prob-
lems, particularly for those that exhibit considerable normalized errors. To investigate
this possibility we take one step back and look at the model’s implied population dis-
tribution function, Go = G (a,e | By), and its associated population density function,
go = g (a,e | By). Since the model’s probability density function constitutes the building
block of the maximum likelihood estimator in (17), examining its behavior will provide
valuable information on whether it is possible to achieve identification of the model pa-
rameters using the likelihood of the data. In particular, we are interested in studying
the sensitivity of the population distribution to small perturbations in the values of the
model’s structural parameters.

We propose to use the Kullback-Leibler (KL) divergence, or relative entropy, to mea-
sure the divergence between any two distributions (see Kullback and Leibler, 1951 and
Kullback, 1959). A similar procedure was proposed in Qu and Tkachenko (2017), where
the distance between any two spectral densities is used to study identification in the class
of linearized representative agent DSGE models. Let G =G (a,¢e | 0) and § = g (a,e | 6)
denote the model’s implied wealth-income distribution and density functions for 8 # 6.

Then, the KL divergence from G to Gy is defined as

DkrL (GOHG Z/ (a,e | By) log(%)da

eel

The value of the KL divergence, k > 0, measures the information differences between the
two distributions Gy and G. Ifk = 0, then if follows that Gy = G almost everywhere
in A x &£, despite the fact that 8 # 6,. For £k > 0, however, the KL. divergence does
not help to assess whether the difference between the two distributions is large or small

along A x €. Following McCulloch (1989), we therefore map the KL divergence between
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wealth-income distributions to the KL divergence between the two Bernoulli distribu-
tions, B (0.5) and B (q), where the implicit probability ¢ is chosen in such a way that
Dk (B(0.5) || B(q)) = Dgr(Go é)g. As an example, suppose that the probability
implied by the two distributions Gy and G is g = 0.51. This corresponds to assign-
ing a fair coin toss a probability of 0.51 when the true probability is 0.5. Interestingly,
Akaike (1973) and White (1982) have shown that mingee D1 (Go || G) = maxgee Ly as
N — oo. Therefore, from an asymptotic perspective, the KL divergence can be used as
a device to explore the behavior of the log-likelihood function around the 6, and hence,
to inform on the ability of the ML estimator to identify the model parameters.

Figure 1 plots the probability ¢ implied by the KL divergence from G to G as we vary
each 6 € @ while keeping the remaining parameters at their population values. All the
KL divergences, apart from that for v, are constructed using parameter values that are
50% below and 50% above of the true parameter value. In the case of v, we employ values
that lie 100% below and 100% above its population value. A dotted vertical line denotes
the value in the DGP. The results suggest that all things equal, small perturbations to p,
a and 0 have a large impact on the shape of the joint distribution of wealth and income.
Therefore, conditional on a given sample being observed, the ML estimator should be
able to identify this subset of parameters given that small differences in their values will
produce significantly different density functions. On the contrary, the influence of v and
some of the income process parameters is small which suggest that the likelihood surface
will be flatter along these dimensions of the parameter space reducing the ability of the
ML estimator to identify them from a given sample. This lack of curvature could explain
the poor performance of the unrestricted ML estimator along these dimensions of the
parameter space described in Section 3. To further exemplify the previous argument,
Figure 2 plots the model’s implied density of wealth for different values of the coefficient
of relative risk aversion and the share of capital in output. As suggested by the KL

divergence, small perturbations in v have virtually no effect on the wealth distribution,

8McCulloch (1989) shows that the KL divergence from B(q) to B(0.5) is given by
Dir (B(0.5) || B(q)) = —log (4g (1 — ¢)) /2. Thus, ¢ measures the divergence of an arbitrary Bernoulli
trial from a fair Bernoulli trial. Given the KL divergence k from G to G, it is straightforward to compute
the implied probability q.
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Figure 1. Kullback-Leibler divergence. The graph plots the implied probability ¢ as-
sociated with the KL divergence from G (a | 0) to G (a | 0p) that results from varying each
parameter at a time while keeping the remaining ones at their population value. The vertical
dashed line denotes the true parameter value.

whereas small changes in « lead to substantial differences in the wealth distribution®.

9The sensitivity of the wealth distribution to changes in the remaining parameters of the model can
be found in the Online Appendix.
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Figure 2. Sensitivity of the wealth distribution. The graph shows the sensitivity of the
distribution of wealth, g (a|@), for selected parameters. The dashed line denotes the population
density of wealth. The continuous lines correspond to the density of wealth resulting from small
perturbations in each parameter while keeping the remaining ones at their population value.

5. Calibration and estimation

Although the results from the previous section indicate that the parameter estimates ap-
proach their true values in the population as the sample size increases, they also suggest
that the identification power of the likelihood function of wealth and income is reduced in
some dimensions of the parameter space, particularly in small samples. For the prototype
economy of Section 2, these inaccuracies are reflected in poor estimates of the parameters
related to the exogenous income process and of the coefficient of relative risk aversion.
A common practice among economists to get around this obstacle is to calibrate the
parameters that are problematic and estimate the remaining ones.

To assess the consequences of following such a strategy, we investigate the finite sam-
ple behavior of the ML estimator when different subset of parameters are externally

calibrated. We begin by considering the case where only v and p are estimated. Then,
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we move on to a case where we also estimate o and §. In both cases, the exogenous
income process is fixed, a strategy that closely resembles the standard practice followed
in the heterogeneous agent literature (cf. Benhabib et al., 2019, Abbott et al., 2019
and Luo and Mongey, 2019). Accordingly, Table 3 summarizes the results from a set of
Monte Carlo experiments where we analyze the properties of the ML estimator condi-
tional on the calibrated values of the corresponding structural parameters of the model.
Each Monte Carlo simulation is based on M = 200 samples generated from the model’s
population stationary probability density function, each of them of size N =5,000.

We report the mean absolute normalized errors, MANE, the median normalized bias,
MNB, and the implied aggregate capital-output ratio (K/Y’), interest rate, and aggre-
gate savings rate across simulations. Panel A reports the outcomes when only data on
individual wealth is used in the estimation and Panel B reports the results when data on
both individual wealth and income is used. The last column from each panel replicates
the unrestricted ML estimation from Section 3 for comparison.

The results in Table 3 show that when we calibrate all the income parameters simul-
taneously, the ML estimator yields sharper estimates. In particular, we obtain smaller
biases in the estimation of the relative risk aversion, the discount rate and the capital
share in output, and a small deterioration in the precision with which we can estimate
the depreciation rate. Considerable improvements, relative to the unrestricted estima-
tion, are also obtained if we additionally calibrate the capital share in output and the
depreciation rate. In general, the size of the finite sample biases are positively related to
the number of parameters being estimated in that fixing a larger subset of parameters
to their true values in the population delivers more precise parameter estimates. This
directly translates to the model implied macroeconomic aggregates. In particular, notice
that the capital-output ratio, the interest rate, and the savings rate are estimated with
the most accuracy when only two parameters are estimated. These results hold across
the different data sets used in the estimation.

Next, we study the finite sample properties of the ML estimator when the income pro-

cess is only partially calibrated. We run Monte Carlo experiments conditional on the in-
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TABLE 3
Conditional subset of parameters, including the income process, fixed
to their population wvalues. The table reports the Mean Absolute Normalized Er-
ror (MANE) and the Median Normalized Bias (MNB, in parenthesis) from a Monte

estimates:

Carlo experiment with M = 200 samples, each of them of size N =5,000.
Panel A: Wealth only Panel B: Wealth and income
0 Restricted Unrestricted Restricted Unrestricted
v 0.8732 0.487 3.739 0.8703 0.489 2.297
(0.8732) (—0.100) (2.399) (0.8703) (—0.073) (0.084)
1) 0.0180 0.341 0.383 0.0180 0.343 0.312
(0.0009) (—0.354) (—0.058) (0.0009) (—0.357) (—0.011)
o o 0.173 0.239 Qo 0.185 0.221
(—0.153) (—0.243) (—0.147) (—0.229)
) do 0.318 0.189 oo 0.345 0.194
(—0.130) (0.114) (—0.138) (0.135)
e €10 €10 3.723 €10 €10 2.905
(4.126) (2.016)
(& €h,0 €h,0 0.890 €h,0 €h,0 0.858
(0.926) (0.898)
Ol ®1h,0 1h,0 0.351 ®1h0 @10 0.389
(—0.093) (0.057)
bni ®hi0 ®hi0 1.547 ®hi0 ®hi0 0.398
(—0.061) (0.046)
K/Y 0.0063 0.0893 0.3731 0.0063 0.0942 0.2859
(0.0052) (0.0832) (—0.3114) (0.0051) (0.0777) (—0.3002)
Interest rate 0.0194 0.3406 0.5066 0.0194 0.3430 0.3120
(—0.0160) (—0.3546) (0.0533) (—0.0159) (—0.3565) (—0.0132)
Savings rate 0.0063 0.2437 0.2217 0.0063 0.2601 0.2197
(0.0052) (—0.0642) (—0.2152) (0.0051) (—0.0628) (—0.2246)

come levels, e; and ey, being fixed to their values in the population, and conditional on the
transition rates, ¢y, and ¢y, also fixed to their population values. The results are summa-
rized in Table 4. In general, we find that calibrating the levels of the income process alone
reduces both the absolute errors and the estimates’ biases considerably. This is particu-
larly the case for the coefficient of v and «, and to a lesser extent, for the transition rates.
Calibrating the transition rates of the income process alone has limited consequences.
Although it helps to reduce the bias in v by nearly half of that obtained from an uncon-
strained estimation, there is virtually no effect on the errors of the remaining parameters.
Interestingly, we find that the use of income data, in addition to wealth data, does not pro-
vide any additional information that can help to identify the income levels. This is most
likely due to the fact that the income data in this model is represented by a binary variable
and hence it only contains information about the stationary probabilities of states.

To further understand the effects of calibrating the income process, either partially or
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TABLE 4
Conditional estimates: income process fixed to their population values. The table reports the
Mean Absolute Normalized Error (MANE) and the Median Normalized Bias (MNB, in paren-
thesis) from a Monte Carlo experiment with M = 200 samples, each of them of size N = 5,000.

Panel A: Wealth only Panel B: Wealth and income
0 Income  Transition All in- | Unrestr] Income  Transition All in- | Unrestr.
levels rates come levels rates come
v 0.550 1.518 0.487 3.739 0.436 1.423 0.489 2.297
(=0.029) (0.867) (=0.100) | (2.399) | (=0.070) (0.476) (=0.073) | (0.084)
0 0.322 0.403 0.341 0.383 0.284 0.403 0.343 0.312
(—0.197) (0.176) (=0.354) | (—0.058) | (—0.2551) (0.079) (=0.357) | (—0.011)
« 0.080 0.279 0.173 0.239 0.067 0.278 0.185 0.221
(—0.027) (—0.263) (—0.153) | (—0.243) | (—0.033) (—0.258) (—0.147) | (—0.229)
0 0.145 0.255 0.318 0.189 0.124 0.277 0.345 0.194
(0.004) (0.060) (=0.130) | (0.114) (0.004) (=0.031) (=0.138) | (0.135)
€l €10 3.476 €10 3.723 €10 3.040 €10 2.905
(3.527) (4.126) (2.001) (2.016)
(& €h,0 1.068 €h,0 0.890 €h,0 0.918 €h,0 0.858
(1.203) (0.926) (0.775) (0.898)
O 0.350 b0 d1h0 0.351 0.211 d1h0 Dih0 0.389
(=0.127) (=0.093) | (=0.092) (0.057)
(bhl 0.718 ¢hl,0 (bhl,O 1.547 0.220 ¢hl,0 ¢hl,0 0.398
(—0.134) (—0.061) | (—0.085) (0.046)
K/Y 0.0459 0.3626 0.0893 | 0.3731| 0.0358 0.3308 0.0942 | 0.2859
(0.0158) (—0.3650)  (0.0832) | (—0.3114)| (0.0211) (—0.2734)  (0.0777) | (—0.3002)
Interest 0.3234 0.4002 0.3406 | 0.5066 0.2841 0.4005 0.3430 | 0.3120
rate (—0.2023) (0.1697) (—0.3546)| (0.0533) | (—0.2553) (0.0766) (—0.3565)| (—0.0132)
Savings 0.1379 0.3381 0.2437| 0.2217| 0.1149 0.3452 0.2601 | 0.2197
rate (0.0288) (—0.2819)  (—0.0642)| (—0.2152)| (0.0293) (—0.2860)  (—0.0628)| (—0.2246)

completely, Figure 3 plots the finite sample distribution of parameter estimates when we
use data on wealth and income in the estimation. A dotted vertical line represents the
true parameter values. The figure confirms not only that a strategy based on calibrating
the income levels delivers relatively unbiased parameter estimates, but also more precise
estimates, as measured by the dispersion around the mean estimates. On the contrary, the
simultaneous calibration of all income parameters produces sharp estimates of v and p but
it also generates distributions that exhibit multiple modes for o and ¢ that could suggest
further identification problems. To investigate this claim we compute the KL divergence
from G to Gy, and the associated implied probability ¢, that results from varying both o
and 0 simultaneously while keeping the remaining parameters at their population values.
Figure 4 plots the contour for ¢ («,d) which shows the presence of a ridge in the o — 9

space. In other words, a proportional increase in both parameters produces almost obser-
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Figure 3. Finite sample distribution of parameter estimates. The graph plots the kernel
density of estimated parameters across M = 200 random samples of size N = 5,000 generated
from the true data generating process. The estimation uses data on individual wealth and
income. The vertical line denotes the true parameter value.

vationally equivalent distribution functions, and therefore partial identification problems.

The tight relation between a and § is an example of identification deficiencies that
are rooted in the economic theory and could persist even in samples of finite size. As
an example, consider the steady state capital-output ratio from the standard neoclassical
growth model, K/Y. Assuming that the gap r — p does not vary significantly with «
and 0, and thus implicitly assumed to be relatively constant, the capital-output ratio of
the Bewley-Hugget-Aiyagari economy is proportional to that of the neoclassical growth
model, K/Y o a/(p + ¢). Therefore, for a given stationary capital-output ratio, and
a given discount rate, the stationary equilibrium leads to a positive relation between «
and ¢ similar to that depicted in Figure 4. The Monte Carlo evidence suggests that
the multimodality in these two parameters, with their corresponding implications for

identification, can be alleviated by calibrating the income process only partially. As
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Figure 4. Kullback-Leibler divergence. The graph plots the contour of the implied prob-
ability ¢ associated with the bivariate KL divergence that results from varying o and § simul-
taneously while keeping the remaining parameters at their population value. The dot denotes
the true parameter value.

shown in Figure 3 the calibration of the income levels or of the transition rates yields
distribution of estimates for  and 9 that are unimodal and at the same time do not affect
the accuracy with which ~ can be identified. Hence, allowing a and ¢ to interact with some
of the income parameters during the estimation process provides a better identification.
Note, however, that fixing the values for the income levels provide the best results in terms
of bias reduction, correct identification, and reduced variability of parameter estimates.

In general, our calibration experiments point towards a strategy based on calibrating
parameters that are weakly identified, as indicated by the KL divergence. This includes
the income levels or the coefficient of relative risk aversion. However, this approach
may not carry any improvement in the identification and estimation accuracy of the ML
estimator if the calibrated values happen to be different from those in the population.
Similar concerns have been raised previously in the context of linearized representative
agent models (see Canova and Sala, 2009). Therefore, we investigate if our previous re-

sults are sensitive to mis-calibration. In particular, we consider the effects of calibrating
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TABLE 5
Conditional estimates: alternative data gemerating process. The table reports the Mean Ab-
solute Normalized Error (MANE) and the Median Normalized Bias (MNB, in parenthesis)
from a Monte Carlo experiment with M = 200 samples, each of size N = 5,000, gen-

erated under alternative data generating process. In particular, A. larger uses e, = 1.5
and e = 0.1; A, smaller uses e, = 0.5 and e; = 0.1; v higher uses v = 2.0, and
~v lower uses v = 0.5. The ML estimation uses data on individual wealth and income.
Wealth and income
A¢ larger A smaller | A, =0.8 ~ higher ~ lower ~v=1.0
K/Y 0.2434 0.3732 0.0358 0.2888 0.2631 0.3081
(0.236) (—0.378) (0.021) (—0.283) (—0.275) (—0.299)
Interest rate 0.3008 0.9752 0.2841 0.5798 0.4342 0.3740
(—0.278) (1.002) (—0.255) (0.604) (0.462) (0.169)
Savings rate 0.1717 0.1410 0.1149 0.1394 0.1916 0.1969
(0.134) (0.118) (0.029) (—0.055) (—0.194) (—0.200)
Gini Coeff. 0.0550 0.1204 0.0398 0.0403 0.0206 0.0396
(—0.055) (0.123) (—0.040) (—0.040) (0.021) (—0.039)
Bottom 50% 0.0507 0.1028 0.0387 0.0368 0.0187 0.0386
(0.051) (—0.105) (0.038) (0.036) (—0.019) (0.038)
Top 10% 0.0390 0.1088 0.0248 0.0288 0.0153 0.0243
(—0.040) (0.111) (—0.025) (—0.028) (0.015) (—0.025)

the risk aversion coefficient, ~, and the labor efficiency gap, Ae, to the values in Table 1
when in reality the true DGP is characterized by higher or lower values.

Table 5 reports the results from a Monte Carlo simulation with M = 200 samples of
wealth and income, each of size N = 5,000. Due to the non-linear dependences among all
structural parameters of the model, we report the MANE and MNB for some of the key
macroeconomic statistics implied by the model. In particular, we analyze the effects of
a higher and lower income level gap and relative risk aversion on the steady state levels
of the capital-output ratio, K/Y, of the interest rate, r, of the aggregate savings rate,
(1 —C/Y), of the Gini coefficient, and of the Lorenz curve'’. For comparison, the table
also reports the case where A, and v are calibrated to the values in Table 1.

The mis-calibration of the income levels can have a substantial impact on the ac-
curacy with which the implied aggregate statistics can be estimated, and thus lead to
wrong inferences. In particular, we find that a calibrated income gap that is higher than
its value in the population leads to considerable biases in the steady state capital-output

ratio, the steady state interest rate and the overall implied wealth distribution. On the

10Gimilar statistics for all the Monte Carlo simulations described in the paper are available upon
request.
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other hand, the mis-calibration of the coefficient of relative risk aversion has a negligible
effect on the implied macroeconomic quantities. This result is consistent with the fact
that the shape of the wealth distribution is not sensitive to changes in v, as suggested by
the KL divergence, and documented in Figure 1.

In summary, our Monte Carlo evidence suggests that p, & and § can be identified and
accurately estimated with the use of cross-sectional data on individual wealth and income
by means of our proposed ML estimator. On the other hand, the coefficient of relative
risk aversion and the parameters describing the exogenous income process display some
identification challenges that may lead to inferential problems that persist even in large
samples. Following standard practice in macroeconomics, we find that a mixed strategy
where a subset of the troublesome parameters is calibrated provides a considerable im-
provement in terms of statistical precision without affecting the overall results. Given
the inherent uncertainty around the correct parameter values to use in the calibration,
the results suggest that fixing the value of the relative risk aversion, and not the income

levels, provides the best finite sample performance of the ML estimator.

6. Empirical illustration

This section provides an empirical illustration of our likelihood approach by estimating
the parameters of the Bewley-Hugget-Aiyagari model of Section 2 for the U.S. economy
using the wealth and wage income data reported in the Survey of Consumer Finances
(SCF) for the year 2013.

To accommodate the high degree of wealth inequality observed in the data, we ex-
pand the number of labor efficiency states in the prototype economy to four so that
the endowment process now follows a continuous-time Markov chain with state space

E ={e1,e9,e3,e4}, with e < e < e3 < ey, that evolves over time according to

th = ZZ (Bi — 6’]’) inj,ta eg € E.

i g
The Poisson processes g;;; for all 4,5 = 1,...4 and ¢ # j count the frequency with which
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an agent moves from state 7 to state j. Associated with each efficiency level, we define
¢i; > 0 to be the instantaneous transition rate from state ¢ to state j. Since individuals
cannot transit to state ¢ while currently being in the same state, it follows that ¢;; = 0,
foralle=1,...,4.

The estimation sample includes data on households with positive net worth and pos-
itive income (per hundred thousand) in order to be consistent with the model’s non-
negative borrowing constraint. The wealth data corresponds to the net-worth reported
in the Summary Extract Public Data provided by the SCF. To obtain an equally weighted
sample of household wealth, we resample the net-worth data using the weights provided
by the SCF. The wage income data is recoded into four discrete states, where each state
corresponds to income levels belonging to one of the following pre-defined quantile bins:
0-25, 25-50, 50-99, 99-100. The unequal spacing of the quantile bins tries to accommodate
the high degree of income inequality in the data''. The final sample includes N =18,631
individuals.

The model’s solution is approximated on a grid for wealth containing I = 500 equally
spaced points. The resulting (negative) log-likelihood function is then minimized us-
ing a GlobalSearch algorithm with 1000 random trial points. We use a non-parametric
bootstrap to compute confidence intervals for the parameter estimates using M = 100
bootstrap samples'?. Following the Monte Carlo evidence of Section 5, we do not at-
tempt to estimate the coefficient of relative risk aversion, . Instead, we calibrate it to
1.0 and estimate all the remaining parameters. Alternative calibrations result in lower
log-likelihood values.

Table 6 reports the maximum likelihood estimates together with their 95% confi-
dence intervals. In Panel A we present the results for the preference parameters, in
Panel B for the income or labor efficiency levels, and in Panel C for the intensity rates
associated with each of the count processes that describe the idiosyncratic income dy-

namics in the economy. Panel D reports the corresponding limiting distribution defined

" Using equally spaced quantile bins will produce much smaller overall estimates of the actual wealth-
income inequality.

12The bootstrapping exercise is computationally demanding. Estimation with M = 100 samples takes
about 58 hours on a dedicated 32 cores Xeon server.
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TABLE 6
Mazimum likelihood estimates. The table reports the maximum likelihood estimates (MLE)
of the model parameters and their 95% confidence intervals computed from a mon-parametric
bootstrap with M = 100 samples. The estimation sample contains N =18,631 observations on
individual wealth and income. The coefficient of relative risk aversion is calibrated to v = 1.0.

Panel A: Preference parameters

Parameter ~ p « )
Value 1.0 0.1120 0.5601 0.0306
[0.1077,0.1138] [0.5507, 0.5624] [0.0256, 0.0349]

Panel B: Income levels, e;

Parameter e1 ) es e4
Value 0.1130 0.1164 0.2586 5.2823
[0.1129,0.1329] [0.1161,0.1371] [0.2450, 0.2653] [4.9703,5.4561]

Panel C: Intensity rates, ¢;; (x 100)

i\Jj 1 2 3 4
1 0 0.0006 0.2275 0.3055
[0.0005, 0.0008] [0.2119, 0.2480] [0.2334,0.3073]
2 0.1427 0 0.0001 0.2128
[0.1089, 0.1503] [0.0001, 0.0002] [0.1859,0.2452]
3 0.2045 0.1842 0 0.0000
[0.1686,0.2124] [0.1653,0.1972] [0.0000, 0.0000]
4 0.0012 0.0013 38.9288 0
[0.0010, 0.0016] [0.0008,0.0015] [37.8903, 43.2152]

Panel D: Stationary probabilities (%)

p(e;) 25.50 25.34 48.83 0.34
[24.78,26.15] [24.76, 26.10] [47.94, 49.26] [0.28,0.34]

as p(e;) = limy_,o p(€;,t), where p (e;,t) denotes the unconditional probability of being
in state e; at time t. Our estimates capture a considerable and persistent degree of in-
come inequality as suggested by the extreme estimate for e, in Panel C which is nearly
50 times the average income of the least efficient individual. It also suggests that the
most productive households are about 20 times more productive than the second most
productive households. With respect to the preference parameters in Panel A, we find
that while the estimates for the discount rate and the capital share of output are some-
what above the values usually reported in the literature, the estimate for the depreciation
rate is below. The estimates of the stationary probabilities closely match the allocation
of households into the different income bins: the mass of agents in the first and second
income/efficiency level is about 25%, the mass in the third level close to 50%), and finally,
the mass of agents with extremely high-income levels does not exceed 1%

Finally, Table 7 compares some wealth statistics and macroeconomic aggregates to
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TABLE 7
Wealth inequality and macroeconomic aggregates:
ports the observed and estimated Gini coefficient, the distribution of wealth across
top percentiles, the capital-output ratio, the interest rate, and the savings rate.
It also reports 95% confidence intervals computed from a mnon-parametric bootstrap.

data vs. model. The table re-

Gini % wealth in top Aggregates
Coefficient 5% 10% 20% K/Y Interest Savings
rate rate
Data 0.8048 57.73 70.27 83.44 3.1 0.08 0.089
Model 0.7912 44.30 63.82 83.57 4.1364 0.1048 0.1267
[0.7817,0.7939]| [42.98,44.76]  [62.27,64.31]  [82.27,83.91] | [4.0193,4.2013] [0.1012,0.1069] [0.1021,0.1419]

those implied by the estimated model. It reports the Gini coefficient, the percentage of
total wealth held by the top 5, 10 and 20 percentiles, the capital-output ratio, the interest
rate, and the savings rate. The observed values for the wealth statistics are computed
directly from the SCF data used in the estimation. The values for the capital-output
ratio and the real interest rate are those reported in Barro (2021), while the aggregate
savings rate corresponds to the historical average between 1959 and 2022 of the personal
savings rate.

The estimated model can match the data quite well considering the simplistic na-
ture of the model. Similar to previous literature which successfully matches the wealth
distribution by focusing on labor income, our estimates indicate that the data favors
the inclusion of an “awesome state”. In particular, a high degree of income inequality
is needed for the prototype model to generate a skewed wealth distribution. It should
be stressed that we don’t see our results as evidence for this particular income process.
As pointed out in Benhabib and Bisin (2018), the implication of the “awesome state”
in the labor income process is very likely to be a counterfactual to the actual income
data. The estimated income process simply captures all other relevant wealth inequality
driving forces (bequest, entrepreneur risk, explosive wealth accumulation, etc.) that are
not present in our simple model. The estimated parameters of the labor efficiency pro-
cess are mostly likely the key driving force for the high degree of the wealth inequality.
Moreover, it is important to realize that the ability of the ML estimator to match the
empirical data on wealth and income (or some of its moments) should not come as a

surprise due to the one-to-one mapping between the model’s likelihood function and the
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model’s approximated joint probability density function of wealth and income. The fact
that the parameter estimates in Table 6 do not match those usually reported elsewhere in
the literature is indicative that our benchmark model is most likely misspecified!®. Lastly,
our results also suggest that the estimated model requires steady-state aggregates that
exceed their observed values for the U.S. economy. In particular, the observed wealth
distribution can only be matched if individuals in the model save a larger fraction of
their income, implying a higher equilibrium real interest rate. As a consequence, the

steady-state capital-output ratio will also be larger.

7. Conclusions

In this paper we introduce a likelihood approach to estimate the structural parameters
of macroeconomic heterogeneous agent (HA) models using microeconomic data. Our ap-
proach makes use of the Fokker-Planck equations that describe the stationary probability
density function of the model which is used to build the likelihood function.

Using a standard Bewley-Hugget-Aiyagari model as the data generating process, we
perform extensive Monte Carlo experiments to study the finite sample properties of the
proposed ML estimator. To investigate its identification power, we propose to use the
Kullback-Leibler (KL) divergence as a tool to determine potential sources of irregular
behavior in the likelihood function before any estimation is conducted.

The simulation results show that the parameters related to the supply side of the
economy and the household’s subjective discount rate can be identified and accurately
estimated with the use of cross-sectional data on individual wealth. On the other hand,
the parameters describing the exogenous income process and the coefficient of relative
risk aversion pose some challenges that materialize in significant biases that persist even
in large samples. The KL divergence indicates that changes in these parameters do not
affect significantly the shape of the wealth distribution, and therefore imply flat likelihood

surfaces in these dimensions of the parameter space. The lack of curvature translates into

13In the Online Appendix we report the estimation results from a modified version of the benchmark
model that includes both income and discount factor heterogeneity along the lines of Krusell and Smith
(1998).

31



weakly identified parameters that could lead to incorrect inferences. However, our results
also suggest that including data on individual income in addition to the wealth data can
help to reduce these biases.

Following standard practice, we instead calibrate some of the troublesome parameters
and estimate all remaining ones. Simulation evidence suggest that this approach delivers
significant improvements over the unrestricted ML estimation. However, given the risk of
mis-calibrating some of these parameters, our results favor fixing the risk aversion coeffi-
cient over any of the income parameters. To illustrate our approach, we provide a small
empirical application in which we estimate the parameters of an extended version of our
benchmark Bewley-Hugget-Aiyagari model using household data on wealth and income
from the Survey of Consumer Finances. Despite the simplistic nature of the model, our
estimates match the data quite well as measured by the implied Gini coefficient and the
distribution of wealth across top percentiles.

Our results are encouraging and suggest an important role for likelihood-based meth-
ods in HA models. The increased quality and quantity of micro data should direct
future research towards more elaborated models, like those studied in Krusell and Smith
(1998), Cagetti and De Nardi (2006), Angeletos and Calvet (2006), Angeletos (2007) and
Benhabib et al. (2011), among others, or more realistic income processes like those in
Achdou et al. (2014) and Gabaix et al. (2016). The ML approach introduced here could
then be extended by using the approximated solution to the time-varying Fokker-Plank
equation instead of its stationary version. However, this will impose some computational
challenges that need to be addressed if one wishes to continue using the entire cross-
sectional data as done here. A potential way to overcome this difficulties is to use some
dimensionality-reduction technique similar to those introduced in the recent HANK liter-
ature (see e.g., Bayer and Luetticke, 2020, Papp and Reiter (2020), Auclert et al. (2021),
Liu and Plagborg-Mgller, 2021, among others). This will help to extend the information
set used in the estimation process, e.g., repeated cross-sections or panel data, potentially
increase the identification power of the structural parameters, and eventually provide a

better fit of the wealth distribution.
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