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Abstract1

We propose a simple and powerful numerical algorithm to compute the transition2

process in continuous-time dynamic equilibrium models with rare events. In this paper3

we transform the dynamic system of stochastic differential equations into a system of4

functional differential equations of the retarded type. We apply the Waveform Relax-5

ation algorithm, i.e., we provide a guess of the policy function and solve the resulting6

system of (deterministic) ordinary differential equations by standard techniques. For7

parametric restrictions, analytical solutions to the stochastic growth model and a novel8

solution to Lucas’ endogenous growth model under Poisson uncertainty are used to9

compute the exact numerical error. We show how (potential) catastrophic events such10

as rare natural disasters substantially affect the economic decisions of households.11
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1 Introduction14

The stochastic growth model in continuous time has received extensive study in the macro15

literature (following Merton, 1975; Chang and Malliaris, 1987).1 This benchmark economy16

gave rise to the development of advanced models for capturing the main features of aggregate17

fluctuations, often referred to as dynamic stochastic general equilibrium (DSGE) models.18

These models are the workhorse in dynamic macroeconomic theory. We use them to organize19

our thoughts, interpret empirical data and for policy recommendations.20

The literature on DSGE models, however, has been surprisingly quiet on the effects of21

large economic shocks such as natural disasters and economic and/or financial crises. Most22

of the papers focus on small and frequent ‘business cycle shocks’. Therefore, departures23

from Normal uncertainty are largely unexplored. But the simple awareness of large and24

rare ‘Poisson jumps’ leads to an adjustment of households’ optimal consumption plans. One25

crucial difference to business cycle shocks is that an econometrician may not observe rare26

events for a longer period, and thus households might appear to be irrational.27

In economic theory, however, we use Poisson events to model, e.g., natural disasters28

(Barro, 2006), technological improvements (Wälde, 1999, 2005),2 exploration for exhaustible29

resources (Quyen, 1991), and financial market bubbles (Miller and Weller, 1990). Simi-30

larly, from an empirical perspective, beside anecdotal catastrophic events such as the 200431

Sumatra-Andoman earthquake and tsunami (South Asia), the 2005 Hurricane Katrina (USA)32

and the recent 2011 Sendai earthquake (Japan), rare disasters are found to have substantial33

asset pricing and welfare implications (Barro, 2009). Moreover, there is empirical evidence34

for rare Poisson jumps (positive and negative) in US macro data (Posch, 2009).35

For most applications, economists need to rely on numerical methods to compute the36

solutions to their models. Thus the literature is making a huge effort in developing powerful37

computational methods (cf. Judd, 1992; Judd and Guu, 1997). Unfortunately, no rigorous38

treatment of how to solve dynamic equilibrium models under Poisson uncertainty numerically39

has been provided so far, and the effects of rare events on approximation errors are unknown.340

This paper proposes a simple and powerful method for determining the transition process41

in dynamic equilibrium models under Poisson uncertainty numerically. It turns out that42

local approximation techniques are not applicable and most global numerical recipes need43

to account for the specific nature of rare events. We show how to extend existing standard44

1The discrete-time one-sector stochastic neoclassical model was pioneered by Brock and Mirman (1972).
The mathematical theory of the neoclassical growth model has its origin in Ramsey (1928).

2Rare events in the form of Poisson uncertainty also form the basis in quality ladder and matching models
(Grossman and Helpman, 1991; Aghion and Howitt, 1992; Lentz and Mortensen, 2008).

3Generally most numerical methods are highly accurate locally (cf. Taylor and Uhlig, 1990; Christiano
and Fisher, 2000; Schmitt-Grohé and Uribe, 2004; Aruoba, Fernández-Villaverde and Rubio-Ramı́rez, 2006).
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algorithms when we allow for the possibility of rare events.45

Our analysis builds on the continuous-time formulation of a stochastic neoclassical growth46

model based on Merton (1975). We use the continuous-time formulation for two reasons.447

Firstly, we can easily compute stochastic differentials for transformations based on random48

variables under Poisson uncertainty. Secondly, for reasonable parametric restrictions we can49

solve the models by hand and obtain closed-form policy functions which can be used as50

a point of reference and to compute the exact numerical error.5 From these benchmark51

solutions our numerical method is used to explore broader parameterizations. Our idea is to52

transform the system of stochastic differential equations (SDEs) into a system of functional53

differential equations of the retarded type (Hale, 1977). We apply the Waveform Relaxation54

algorithm, i.e., we provide a guess of the policy function and solve the resulting system of55

(deterministic) ordinary differential equations (ODEs) by standard techniques.56

This procedure is applicable to models which imply a dynamic system of controlled SDEs57

under Poisson uncertainty. The controls are Markov controls in the form of policy functions58

(cf. Sennewald, 2007). Although our method can also be applied to Normal uncertainty,59

existing standard procedures can be used for this class of models (cf. Candler, 1999). We60

therefore do not advocate the use of the Waveform Relaxation algorithm over alternative61

approaches in all cases and applications. We aim at expanding the set of tools available to62

researchers by showing how to solve dynamic economies under Poisson uncertainty.63

We show that our solution method works. Although the suggested procedure computes64

the policy functions for the complete state space — even for non-linear solutions — the65

maximum (absolute) error compared to the exact solutions is very small. A strength of our66

approach is that existing algorithms are easily extended to allow for Poisson uncertainty. We67

illustrate our approach for two popular methods computing numerical solutions to dynamic68

general equilibrium models, i.e., the backward integration (Brunner and Strulik, 2002) and69

the Relaxation algorithm (Trimborn, Koch and Steger, 2008). From an economic point of70

view, we find that (potential) large shocks affect optimal consumption and hours strategies.71

The structure of the paper is as follows. In Section 2 of this paper, we describe the class72

of models of interest. In Section 3, we describe the Waveform Relaxation method in detail73

and discuss alternative approaches. In Section 4, we present two applications. The first is74

the stochastic growth model with rare disasters. We choose parameterizations that allow75

for analytical solutions to compute the numerical error. The second is the Lucas model76

of endogenous growth including a novel analytical solution under Poisson uncertainty. We77

4Continuous time models under uncertainty are widely used in economics (for a survey see Wälde, 2011),
a continuous-time New Keynesian model is in Fernández-Villaverde, Posch and Rubio-Ramı́rez (2011).

5Analytical solutions for parametric restrictions are frequently used in macro models (Turnovsky, 1993,
2000; Corsetti, 1997; Wälde, 2005, 2011; Turnovsky and Smith, 2006; Posch, 2009).
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conclude in Section 5.78

2 The macroeconomic theory79

This section introduces a broad class of economic models under Poisson uncertainty which80

can be solved by means of Waveform Relaxation. Our algorithm (presented in Section 3.2)81

can be used to study transitional dynamics in models under Poisson uncertainty. We show82

how standard numerical techniques, which compute the optimal time paths of variables, can83

be extended to allow for Poisson uncertainty, i.e., how they can be used to solve a system84

of (stochastic) differential equations. A discussion of alternative approaches is provided in85

Section 3.3. For this purpose, we develop our theoretical framework in Section 2.1, and then86

present a simple procedure to obtain the (optimal) dynamic system in Section 2.2.87

Our motivation stems from the rare disaster literature (Rietz, 1988; Barro, 2006, 2009).88

Hence, our illustrations are mainly for rare events such as earthquakes or hurricanes which89

remove a certain fraction of the capital stock. Obviously, our framework is not limited to this90

particular class of models. For example, infrequent productivity increases are found in the91

endogenous growth literature (Wälde, 2005). In any case, below we demonstrate that models92

with rare (but potentially large) economic shocks are conceptionally different from models93

with smaller shocks, e.g., ‘business cycle shocks’ resulting from Normal uncertainty. In a94

nutshell, we show below that the Bellman equation for models under Poisson uncertainty is a95

functional differential equation, while a partial differential equation is arising under Normal96

uncertainty (cf. Sennewald, 2007; Wälde, 2011).97

2.1 The theoretical framework98

Consider the following infinite horizon stochastic control problem,99

maxE

∫ ∞

0

e−ρtu(xt, ct)dt s.t. dxt = f(xt, ct)dt+ g(xt−, ct−)dNt, x0 = x, (1)

in which xt ∈ Ux denotes a vector of states from the state space Ux ⊆ R
nx , ct ∈ Uc denotes100

a vector of controls from the control region Uc ⊆ Rnc , u : Ux × Uc 7→ R, f : Ux × Uc 7→ Rnx
101

are vector functions which ensure concavity and boundedness, g : Ux × Uc 7→ R
nx×nx is102

an nx × nx matrix, and ρ is the rate of time preference. Let Nt denote the nx vector of103

(stochastically independent) Poisson processes with arrival rates λ = (λ1, ..., λnx
)⊤.6 We104

define xt− ≡ lims→t xs for s < t as the left-limit at time t such that xt− is the value an105

instant before a discontinuity (henceforth jump) and xt = xt− for continuous paths.106

6Though there is no conceptional difficulty in extending our analysis to models where the arrival rate is
a function of the control and/or the state variable, λt = λ(xt, ct), we consider constant arrival rates.
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Economically, u(xt, ct) specifies the (instantaneous) reward function, f(xt, ct) denotes107

the drift function of the state variables and g(xt, ct) is a matrix specifying the jump of state108

variables if a ‘disaster’ occurs. If such a rare event of the type i materializes, then dNi,t = 1,109

which affects state variables through the ith column of the matrix g(xt, ct).110

2.2 Bellman’s principle and reduced form descriptions111

Closely following Sennewald (2007), choosing an admissible control, c ∈ Uc and defining

V (x) as the (optimal) value function, we obtain the Bellman equation

ρV (x) = max
c∈Uc

{

u(x, c) +
1

dt
E0dV (x)

}

,

which is a necessary condition for optimality. Using Itô’s formula (change of variables),112

dV (x) = Vx(x)
⊤f(x, c)dt+

nx
∑

i=1

(V (x+ gi)− V (x)) dNi

≡ Vx(x)
⊤f(x, c)dt+ v(x, c)⊤dN,

in which Vx is the nx vector of partial derivatives, gi is the ith column of g(x, c), and v(x, c)113

stacks the vector of jump terms of the value function corresponding to N . If we take the114

expectation of the integral form and use the martingale property, assuming that the above115

integrals exist (Sennewald, 2007, Theorem 2), we arrive at116

E0dV (x) = Vx(x)
⊤f(x, c)dt+ v(x, c)⊤λdt, (2)

and the Bellman equation becomes

ρV (x) = max
c∈Uc

{

u(x, c) + Vx(x)
⊤f(x, c) + v(x, c)⊤λ

}

.

A neat result about the continuous-time formulation (compared to discrete-time models) is117

that the Bellman equation (2) is, in effect, a deterministic differential equation because the118

expectation operator disappears (Chang, 2004, p.118). The first-order conditions read119

uc(x, c) + fc(x, c)
⊤Vx(x) +

nx
∑

i=1

(∂gi(x, c)/∂c)
⊤ Vx(x+ gi)λi = 0 (3)

for any t ∈ [0,∞). The first two terms denote the first-order conditions as from deterministic120

control problems. In case the jump size is a function of the controls, we obtain additional121

terms represented by the third summand. These terms reflect the effect of the optimal122

control on the jump size of the states weighted by the probability of arrival. Note that the123

costate variable is evaluated at different values of the state variables.124
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From now on c denotes the optimal control variable. For the evolution of the costate we

use the maximized Bellman equation,

ρV (x) = u(x, c) + Vx(x)
⊤f(x, c) +

nx
∑

i=1

(V (x+ gi)− V (x)) λi. (4)

We make use of the envelope theorem to compute the costate,125

ρVx(x) = ux(x, c) + fx(x, c)Vx(x) + Vxx(x)
⊤f(x, c)

+
nx
∑

i=1

(

(I + ∂gi(x, c)/∂x)
⊤Vx(x+ gi)− Vx(x)

)

λi,

in which I denotes the nx identity matrix. Collecting terms we obtain126

[(

ρ+

nx
∑

i=1

λi

)

I − fx(x, c)

]

Vx(x) = ux(x, c) + Vxx(x)
⊤f(x, c)

+
nx
∑

i=1

(I + ∂gi(x, c)/∂x)
⊤Vx(x+ gi)λi. (5)

Using Itô’s formula, the costate obeys127

dVx = Vxx(x)
⊤f(x, c)dt+

nx
∑

i=1

(Vx(x+ gi)− Vx(x)) dNi,

where inserting (5) yields the evolution of the costate variable128

dVx =

[(

ρ+

nx
∑

i=1

λi

)

I − fx(x, c)

]

Vx(x)dt− ux(x, c)dt

−
nx
∑

i=1

(I + ∂gi(x, c)/∂x)
⊤Vx(x+ gi)λidt +

nx
∑

i=1

(Vx(x+ gi)− Vx(x)) dNi. (6)

The evolution of the costate (6) consists mainly of three parts. Here, λi corresponds to129

the probability that a disaster of the type i occurs over the course of a period ∆, i.e., the130

probability of one jump during a period ∆ is given by e−λi∆λi∆. For λi = 0 (∀i = 1, . . . , nx)131

the costate evolves as in the standard deterministic model given by the first summand. The132

second part for λi > 0 illustrates the functional dependence of the costate not only on x, but133

also on the state variables to which the economy jumps in case a rare disaster of the type i134

occurs, x+ gi. In other words, households take into account that disasters may occur. The135

last part gives the actual jump terms in case of a disaster of the type i, in which dNi = 1136

(Ni simply counts the number of arrivals of type i events).137

For the general case, we solve the dynamic system (6) and the constraint in (1) together138

with the static condition (3) for the variables Vx, x and c.139

5



For the case where g(x, c) = g(x) does not depend on c, it is often possible to obtain140

Euler equations for consumption and eliminate the costate from the dynamic system. This141

yields a system of stochastic differential equations in x and c only. For this, we assume142

that the inverse function c = h(Vx, x) for the optimality condition (3) exists and is strictly143

monotonic in both arguments. Then we may write the dynamic equilibrium system as144

dx = f(x, c)dt+ g(x)dN, (7a)

dc =
∂h(Vx, x)

∂Vx

[

dVx −
nx
∑

i=1

(Vx(x+ gi(x))− Vx(x)) dNi

]

+
∂h(Vx, x)

∂x
f(x, c)dt+

nx
∑

i=1

(h(Vx(x+ gi(x)), x+ gi(x))− h(Vx(x), x)dNi, (7b)

in which we insert dVx from (6) and eliminate Vx using the static condition (3).145

Further, the transversality condition is limt→∞ e−ρtV (x) ≥ 0 for all admissible paths,146

where the equality holds for the optimal solution.147

3 The numerical solution148

This section transforms the reduced form (7) into a system of functional differential equations149

of the retarded type (RDEs). An extension to the more general case, where the costate150

variables cannot be eliminated, does not pose any conceptional difficulties.7 We apply the151

Waveform Relaxation algorithm, i.e., we provide a guess of the optimal policy function and152

solve the resulting systems of ODEs.153

3.1 Description of the problem154

The system of controlled stochastic differential equations (7) can be generalized to155

dxt = f (xt, ct) dt+ g(xt−)dNt, (8a)

dct = h (xt, ct, [c(x)]) dt+ j(xt−, ct−, [c(x)])dNt, (8b)

given initial states x0 and transversality conditions. By the argument [c(x)] we define the156

optimal solution or policy function, i.e., the optimal control as a function of a given state,157

c = c(x). Here, a square bracket, [·], emphasizes the fact that the dependence of h and j on158

c(x) is non-local, but on the whole policy function. The optimal solution c(x) is of course a159

priori unknown. We assume that system (8) has a unique solution which only depends on160

the state variables and define the function c(x) : Ux ⊆ Rnx 7→ Uc ⊆ Rnc , where Ux denotes161

7Note that the proposed procedure handles algebraic equations in a straightforward way.
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the state space and Uc the control region with nx and nc denoting the number of states and162

controls. Similarly, we define the functions f, g, h and j as f : Ux×Uc 7→ Rnx , g : Ux 7→ Rnx ,163

h : Ux × Uc × Ck(Ux, Uc) 7→ Rnc , and j : Ux × Uc × Ck(Ux, Uc) 7→ Rnc , respectively.8 All164

functions are of class Ck, i.e., the partial derivatives of up to (and including) order k exist165

and are continuous with k being sufficiently large.166

Consumers’ choice of control variables depends on the whole policy function c(x), because167

they consider the probability that a (Poisson) ‘disaster’ hits the economy. In this rare event,168

the state variable xt jumps by g(xt−) and consumption adjusts accordingly. In normal times,169

however, when no disaster occurs, consumers still consider the possibility that a disaster could170

occur in the next instant of time for their optimal plans. In equation (6) this is illustrated171

by the fact that the evolution of the costate depends on the current state and on the state172

of the economy immediately after a disaster occurs. Equation (8b) accounts for this fact173

by including the complete solution c(x) on the right hand side. Hence, the more general174

formulation of system (8) includes our system (7), and accounts exactly for this mechanism:175

hypothetical ‘after-disaster’ states and controls influence today’s decisions.176

System (8) has to be augmented by boundary conditions for the beginning and the end177

of the time horizon. Transversality conditions usually require (scale-adjusted) variables to178

converge towards some interior steady states for t → ∞, conditional on no jumps, dNt ≡ 0.9179

We denote steady-state values by {x∗, c∗} ⊆ Ux×Uc. Generally, it is not sufficient to compute180

the solution on some subdomain of Ux. The reason can be illustrated by the example of a181

one-dimensional state space. If the domain is restricted to, e.g., [x0, x
∗] the state could be182

thrown back to an even smaller value than x0 or jump to a value above x∗. For that reason,183

the optimal control on [x0, x
∗] depends on the optimal control for some xt < x0 and xt > x∗.184

To take this dependency into account the solution has to be computed on the domain Ux,185

which for macroeconomic problems typically is R+. Extending this to an nx-dimensional186

state space the solution has to be calculated on the entire domain Ux.187

3.2 The Waveform Relaxation algorithm188

The crucial task for the numerical solution is to compute the policy function implied by the189

(conditional) deterministic system, which means for dNt ≡ 0,190

dxt = f (xt, ct) dt, (9a)

dct = h (xt, ct, [c(x)]) dt. (9b)

8For cases where one function, say h = h(xt, ct, Zt, [c(x)]) is a function of a random variable, Zt, in general
our procedure requires conditioning, Zt = z, such that h = h(xt, ct, z, [c(x)]) ≡ h̄(xt, ct, [c(x)]).

9If no ambiguity arises, we use ‘steady state’ and ‘conditional steady state’ interchangeably.
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In a second step, the stochastic paths are obtained by adding the Poisson process Nt, making191

use of the policy function ct = c(xt). By construction, any solution to (9) solves the Bellman192

equation (4). The controls and the states follow the paths implied by the system (9) as long193

as no jump occurs (pathwise continuous). If a jump occurs at date t, the system adjusts194

according to j and g with ct− = c(xt−).195

In the mathematical literature, the equations in system (9) are referred to as functional196

differential equations of the retarded type (cf. Hale, 1977; Kolmanovskii and Myshkis, 1999).197

A well-known special case of these equations are differential-difference equations (DDEs) in198

which the dynamic system exhibits a time delay (e.g., Boucekkine, Germain, Licandro and199

Magnus, 1998, 2001; Asea, Zak 1999). In system (8), the jump term in case of a disaster is200

known in terms of controls and states, not in terms of time and, hence, the solution methods201

for DDEs are not suitable. This is why we apply a more general algorithm to solve functional202

differential equations. Our method is also suitable for solving systems of DDEs.203

For calculating the policy function ct = c(xt) we exploit the fact that numerous numerical204

methods are available to solve (9) without a dependency on the optimal solution,205

dxt = f (xt, ct) dt, (10a)

dct = h̃ (xt, ct) dt. (10b)

The idea of Waveform Relaxation algorithms is as follows: by providing a guess of the206

policy function c0(x), system (9) reduces to (10), because the feedback of the solution path207

on dct is neglected.10 Now, problem (10) is a standard system of ODEs and can thus be208

solved by standard algorithms.11 In general, the obtained solution c1(x) will be different209

from the initial guess c0(x). Hence, a solution of the original (deterministic) problem (9) is210

not found yet. In the next step the initial guess is updated to c1(x) and the loop is repeated.211

If the updated solution ci(x) is the same as the guess ci−1(x), a solution of the deterministic212

problem (9) is found (we summarize our Waveform Relaxation algorithm in Table 1).213

More formally, we construct a fix-point iteration for the operator N such that a function214

z is a fix point of this operator: N (z) = z. The function z represents the desired solution,215

z : R 7→ Rnx+nc. The operator N is defined by a modification of problem (9). We start with216

a trial solution z0 and iterate by evaluating N , until ‖zi − zi−1‖ is sufficiently small.217

10Waveform Relaxation algorithms for initial value problems and appropriate error estimation are described
in Feldstein, Iserles and Levin (1995), Bjørhus (1994) and Bartoszewski and Kwapisz (2001). Alternative
procedures for solving system (9) are collocation methods as described in Bellen and Zennaro (2003).

11For problems with one state variable, among others, these are the backward integration procedure
(Brunner and Strulik, 2002) and the procedure of time elimination (Mulligan and Sala-i-Mart́ın, 1991). For
problems with multiple state variables we can use projection methods (e.g., Judd, 1992), the method of
Mercenier and Michel (1994), and the Relaxation method (Trimborn et al., 2008).
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Table 1: Summary of the Waveform Relaxation algorithm

Step 1 (Conditioning) Construct the conditional deterministic system of RDEs (system 9).
Step 2 (Initialization) Provide an initial guess for the policy function.
Step 3 (Solution) Solve the resulting system of ODEs (system 10).
Step 4 (Update) Update the policy function.
Step 5 (Iteration) Repeat Step 3 and Step 4 until convergence.

For defining the operator N , we take a trial solution c0(x) as given. We define218

dxi = f (xi, ci) dt, (11a)

dci = h (xi, ci, ci−1(x)) dt, (11b)

for each iteration i = 1, . . . , n. Thus, system (11) represent a system of ordinary differential219

equations which can be solved by the existing standard numerical methods.220

For single-state problems (nx = 1) we employ the backward integration method proposed221

by Brunner and Strulik (2002).12 For a brief description of this method, recall that equations222

(11a) and (11b) represent a system of ODEs with an interior, computable stationary point.223

This point usually exhibits a saddle-point structure, i.e., a stable one-dimensional manifold224

(policy function) connecting the steady state to the origin, and an unstable one-dimensional225

manifold. Our task is to compute the stable manifold numerically, for which we exploit226

the saddle-point structure. By reversing time, the stable (unstable) manifold becomes an227

unstable (stable) manifold. Thus, by starting near the manifold, solution trajectories are228

attracted by the (optimal) policy function.229

An important difference to standard methods in each iteration step is the evaluation of230

the function ci(x). Note that the solution of the previous iteration ci−1(x) is only available231

at certain points in the phase space. However, functions f and h of system (11) also need an232

evaluation of ci−1(x) at interior points. We employ a cubic spline interpolation of ci−1(x) to233

evaluate f and h. In order to control for the improvement in convergence, a suitable norm234

has to be chosen. We calculate the deviation of the policy function between two iterations235

on a mesh of points representing the whole state space Ux and employ the Euclidian norm236

‖ci(xi) − ci−1(xi)‖, where xi(1) < ... < xi(M) and M denotes the number of points on the237

mesh (M determines the accuracy of the solution).238

For multiple-state problems (nx > 1) we employ the Relaxation algorithm as described239

in Trimborn et al. (2008) to solve the deterministic system (11). This method can be applied240

to continuous-time deterministic problems with any number of state variables. The principle241

12Note that backward iteration can be applied to any number of control variables, i.e., nc ≥ 1.
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of relaxation is to construct a large set of non-linear equations, the solution of which repre-242

sents the desired trajectory. This is achieved by a discretization of the involved differential243

equations on a mesh of points in time. The set of differential equations is augmented by244

algebraic equations representing equilibrium conditions or (static) no-arbitrage conditions at245

each mesh point. Finally, equations representing the initial and final boundary conditions246

are appended. The whole set of equations is solved simultaneously.247

For multiple-state problems, we select starting values x0 uniformly located in a rectangle248

in the state space Ux and calculate transitional dynamics starting from each of these initial249

values. The solutions give a good representation of the policy function. Again, the policy250

function is only available on a mesh in the state space. Similar to the simulations with251

a one-dimensional state space, we employ a cubic spline interpolation to obtain the policy252

function at arbitrary interior points. Different from the procedure above, we use only the253

initial value of each iteration for interpolation. This turns out to be a more robust approach,254

presumably due to the evenly spaced grid one obtains in this case.255

Similar to other procedures, complexity and computation time increases considerably256

with the number of state variables, which is known as the ‘curse of dimensionality’. The257

computational speed could be improved substantially, however, by using graphics processing258

units (cf. Aldrich, Fernández-Villaverde, Gallant and Rubio-Ramı́rez, 2011). The idea is to259

parallelize the algorithm and employ graphic processors to solve each independent step at260

the same time. It is straightforward to parallelize the Waveform relaxation algorithm: each261

of the transition paths starting at a particular initial position in the state space can be used262

as one independent step and, hence, these paths can be calculated at the same time. Thus,263

by parallelization, computational costs per iteration can be reduced considerably.264

3.3 Comparison to alternative approaches265

We briefly compare the Waveform Relaxation algorithm to alternative solution methods266

which are frequently used in order to solve DGSE models. For a detailed description of these267

methods see, for example, Judd (1998) and Marimon and Scott (1999).268

3.3.1 Local approximation methods269

Local approximation methods are widely applied in economics since they are known to solve270

the stochastic models (under Normal uncertainty) efficiently. The effects of large economic271

shocks on the approximation error, however, are largely unexplored. This is unfortunate since272

the local approximation might be inaccurate far off the stationary state around which the273

solution is approximated. Even without observing large economic shocks, as shown above,274

households’ decisions near (or at) the steady state depend on the value of state variables off275
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the steady state, which again would lead to approximation errors since the solution technique276

would incorrectly incorporate the effect of a potential disaster. The approximation error far277

off the steady state thus propagates to the steady state region, which implies that local278

methods might also approximate poorly the policy function around the steady state. This279

property makes local numerical approximation techniques unattractive: a Poisson shock may280

drive the economy far away from its steady state value (cf. Barro, 2006), i.e., it may do so281

in regions where the accuracy is poor. For this reason, local methods are not suitable for282

approximations of the policy functions in our models.283

3.3.2 Global approximation techniques284

A number of methods are customized to solve models with Normal uncertainty. Most of these285

methods exploit the specific structure of the Bellman equation and thus are not suitable for286

our problem. For example, Büttler (1995) and Candler (1999) apply finite differences to solve287

the Bellman equation as a partial differential equation (PDE). However, finite differences288

cannot be used to solve our functional differential equation. As illustrated before, the major289

difficulty in using such methods is that the value function depends on the current state and290

on the state of the economy immediately after a Poisson shock occurs.291

We are aware of at least two global approaches capable of solving our problem at hand:292

policy function (and value function) iteration and projection methods (spectral methods).293

Both approaches solve for the policy function numerically using the standard contraction294

mapping theorem which is independent from its particular functional form. One caveat295

is that such methods may converge to a wrong solution since the unstable manifold also296

solves the Bellman equation. Moreover, even for the standard stochastic growth model a297

sophisticated initial guess for the policy function is needed in order to obtain the correct298

solution and/or to achieve convergence (cf. Judd, 1992, p.431). Our approach is not subject299

to those limitations. Since the Waveform Relaxation algorithm solves the system of ODEs300

for the time path of variables instead of solving the Bellman equation, by construction, it301

converges to the stable manifold.13 Hence, we do not encounter problems of convergence302

towards the unstable manifold even when starting with an uninformative initial guess.303

To summarize, the Waveform relaxation algorithm is a global and non-linear solution304

method and scores with robustness and reliability. A detailed comparison to alternative305

approaches along the lines of Taylor and Uhlig (1990) is on our research agenda.306

13By solving for the time path of variables, the solution satisfies initial boundary conditions for time t0
and final boundary conditions in the form of steady state values for time ∞. Since our solution converges
towards steady state values as t → ∞, it characterizes the stable manifold.
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4 Illustrative examples307

The following examples are intended to illustrate potential economic applications in macro.308

To start with, we first consider the stochastic Ramsey problem with a single control and state309

variable, and then use a stochastic version of the Lucas model of endogenous growth mainly310

to illustrate the fact that multi-dimensional systems do not pose conceptional difficulties. In311

order to keep notation simple, we only consider problems faced by a benevolent planner, and312

use capital letters to denote variables in the planning problem which correspond to individual313

variables in the household’s and firm’s problems.314

4.1 A neoclassical growth model with disasters315

This section solves the stochastic neoclassical growth model under Poisson uncertainty which316

is motivated by the Barro-Rietz rare disaster hypothesis (Rietz, 1988; Barro, 2006).317

Specification. Suppose that production takes the form of Cobb-Douglas, Yt = Kα
t L

1−α,318

0 < α < 1. Labor is supplied inelastically and capital can be accumulated according to319

dKt = (Yt − Ct − δKt) dt− γKt−dNt, (K0, N0) ∈ R
2
+, 0 < γ < 1, (12)

where Nt denotes the number of (natural) disasters up to time t, occasionally destroying γ320

percent of the capital stock Kt at an arrival rate λ ≥ 0.14321

The benevolent planner maximizes welfare by choosing the optimal path of consumption,322

max
{Ct}∞t=0

E

∫ ∞

0

e−ρtC
1−θ
t

1− θ
dt s.t. (12). (13)

Solution. From the Bellman principle, a necessary condition for optimality is

ρV (K0) = max
C0∈R+

{

C1−θ
0

1− θ
+ (Kα

0 L
1−α − C0 − δK0)VK(K0) + (V (K0 − γK0)− V (K0))λ

}

,

and the first-order condition corresponding to (3) reads323

C−θ
t − VK(Kt) = 0 (14)

for any t ∈ [0,∞), making the control variable a function of the state variable, Ct = C(Kt).324

Hence, the problem (13) can be summarized as a system of controlled SDEs,325

dKt = (Kα
t L

1−α − Ct − δKt)dt− γKt−dNt,

dCt =
(

αKα−1
t L1−α − ρ− δ − λ+ λ(1− γ)C̃(Kt)

−θ
)

Ct/θdt−
(

1− C̃(Kt−)
)

Ct−dNt,

in which we define C̃(Kt) ≡ C((1−γ)Kt)/C(Kt), such that 1−C̃(Kt−) denotes the percentage326

drop of optimal consumption after a disaster.327

14For a stochastic neoclassical growth model with elastic labor supply and the asset market implications
of the Barro-Rietz rare disaster hypothesis, the interested reader is referred to Posch (2011).
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4.1.1 Evaluation of the algorithm328

We calculate numerical solutions for two benchmark calibrations. In both cases, an analytical329

representation of the policy function can be computed for plausible parameter restrictions.330

Therefore, we can compare numerical and analytical solutions and calculate computational331

errors to evaluate the performance of the Waveform Relaxation algorithm.15332

Because the neoclassical growth model has one state variable, it is well suited for the333

backward integration procedure (cf. Brunner and Strulik, 2002). As explained above, by334

starting near the steady-state value K∗ (the value towards which the economy converges if335

no disasters occur), the solution trajectories are attracted by the optimal policy function.16336

Our first benchmark solution employs a plausible parameterization which allows for an337

analytical solution (α, θ, δ, λ, γ) = (0.5, 2.5, 0.05, 0.2, 0.1) similar to Posch (2009) and imposes338

ρ = ((1− γ)1−αθ − 1)λ− (1− αθ)δ which gives ρ = 0.0178. Using this parametrization, the339

average time between two disasters is 1/λ = 5 years, with each Poisson event destroying 10340

percent of the capital stock. For less frequent and/or smaller rare events, as e.g. for US341

data (with γ roughly 2.5 percent), our algorithm would improve performance since the true342

solution is closer to the deterministic guess. As shown in the appendix, consumers choose a343

constant saving rate s ≡ 1/θ and the policy function is Ct = C(Kt) = (1− s)L1−αKα
t . Thus344

the optimal jump term is constant, C̃(Kt) = (1 − γ)α. Although technically a knife-edge345

solution, the policy functions for solutions around this parameter region are very similar.346

As shown in Figure 1, the deterministic policy function (for λ = 0 and/or γ = 0) and347

the stochastic policy function differ substantially for our calibration. This illustrates that348

(potential) rare events can have substantial effects on households’ behavior.349

Figures 2a and 2b show the absolute and relative error of the numerically obtained350

policy function compared to the analytical solution, respectively. Both plots indicate that351

the solution exhibits a high accuracy even for a large deviation from the steady state implied352

by economically large shocks. The absolute and relative errors compared to the true solution353

are below 10−8 within the most relevant interval between 0 andK∗. The maximum (absolute)354

errors are below 10−5 for values of capital of 150 percent of K∗, which is below the accuracy355

usually required for economic applications. Economically, this value denotes the error as a356

fraction of consumption at Kt: with a relative error of 10−5, the consumer is making a $1357

mistake for each $10, 000 spent (Aruoba et al., 2006, p.2499).358

15The literature typically evaluates the performance using Euler equation residuals (see e.g. Judd, 1992).
Santos (2000) shows that approximation errors of the policy function are of the same order of magnitude
as the Euler equation residuals. Hence, we are able to compare our results with algorithms solving similar
models (as in Aruoba, Fernández-Villaverde and Rubio-Ramı́rez, 2006; Dorofeenko, Lee and Salyer, 2010).

16For the backward integration procedure we deviate 10−12 in magnitude from the ‘steady state’ and we
choose 10−14 as relative error tolerance for the Runge-Kutta procedure (cf. Brunner and Strulik, 2002).
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Figures 2c and 2d show the absolute and relative change of the policy function, respec-359

tively, compared to the previous iteration. It is apparent that both functions are of the same360

shape and order of magnitude as the numerical errors compared to the analytical solution.361

This shows that the change of the policy function between two iterations is an excellent ap-362

proximation for measuring the numerical error of the solution. We make use of this striking363

similarity to define our criterion function to gauge the accuracy of the numerical solution for364

the general case where no analytical solution is available.365

Our second benchmark solution requires the parametric restriction α = θ, which implies366

a linear policy function, Ct = C(Kt) = φKt.
17 As shown in the appendix, the marginal367

propensity to consume is φ = (ρ− ((1− γ)1−θ − 1)λ− (θ− 1)δ)/θ. Since the policy function368

is linear, the optimal jump term is constant, C̃(Kt) = 1 − γ. For ease of comparison, we369

choose the same calibration for parameters as above, but a smaller value for the parameter370

of relative risk aversion (or higher value for the intertemporal elasticity of substitution),371

θ = 0.5. As shown in Figure 3a both the deterministic policy function and stochastic policy372

function are indeed linear in the capital stock. Once again, both policy functions differ373

substantially. Figure 3b shows the optimal jump in consumption with respect to capital,374

which is again independent of capital.375

Figures 4a and 4b show the absolute and relative error of the numerically obtained policy376

function compared to the analytical solution, respectively. In fact, the solution is obtained377

already at the first iteration and exhibits a high accuracy of roughly 10−15, close to the378

machine’s precision. The reason for immediate convergence and high accuracy lies in the379

linearity of deterministic and stochastic policy functions: jump terms computed from a380

linear policy function are independent from the policy function’s slope and are thus already381

correctly computed at the first iteration. Figures 4c and 4d show the absolute and relative382

change of the policy function, respectively, compared to the previous iteration. Again both383

measures are of similar shape and order of magnitude.384

In order to show that the accuracy of the algorithm does not depend on the chosen385

parameters, we conduct a sensitivity analysis with respect to the frequency of disasters, λ,386

and the percentage of capital that is destroyed by a disaster, γ. Parameter sets 1 and 4,387

summarized in Table 2, reiterate our two benchmark calibrations. Parameter sets 2 and388

5 assume that a higher proportion of the capital stock is destroyed if a disaster occurs389

(γ = 0.2), but such disasters occur with a lower probability (λ = 0.1). Finally, parameter390

sets 3 and 6 assume an even higher destruction rate (γ = 0.4) and a lower probability391

(λ = 0.05) of disasters. The parameters are chosen such that an analytical solution is392

available. For the parameter sets 1 to 3 we adjust the rate of time preference such that393

17This solution is well established in macroeconomics (cf. Posch, 2009, and the references therein).
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Table 2: Accuracy of the solution to the neoclassical growth model with disasters

Parameter Number of absolute deviation relative deviation absolute deviation relative deviation

seta) iterations (last iteration) (last iteration) (analytical solution) (analytical solution)
‖yn − yn−1‖ ‖yn/yn−1 − 1‖ ‖yn − y‖ ‖yn/y − 1‖

1 15 6.7 · 10−6 5.2 · 10−5 6.7 · 10−6 1.2 · 10−5

2 19 1.3 · 10−6 1.9 · 10−4 8.7 · 10−7 1.3 · 10−6

3 28 2.3 · 10−9 6.5 · 10−6 1.6 · 10−9 9.0 · 10−7

4 2 2.1 · 10−13 1.1 · 10−13 1.7 · 10−13 1.0 · 10−13

5 2 1.1 · 10−13 7.5 · 10−14 1.2 · 10−13 8.0 · 10−14

6 2 1.2 · 10−13 1.6 · 10−13 1.3 · 10−13 1.3 · 10−13

a) Parameter sets used in the sensitivity analysis:

1: (α, θ, δ, λ, γ, ρ) = (0.5, 2.5, 0.05,0.2,0.1, 0.0178), 2: (α, θ, δ, λ, γ, ρ) = (0.5, 2.5, 0.05,0.1,0.2, 0.0182),
3: (α, θ, δ, λ, γ, ρ) = (0.5, 2.5, 0.05,0.05,0.4, 0.0193), 4: (α, θ, δ, λ, γ, ρ) = (0.5, 0.5, 0.05,0.2,0.1, 0.0178),
5: (α, θ, δ, λ, γ, ρ) = (0.5, 0.5, 0.05,0.1,0.2, 0.0178), 6: (α, θ, δ, λ, γ, ρ) = (0.5, 0.5, 0.05,0.05,0.4, 0.0178).

ρ = ((1 − γ)1−αθ − 1)λ − (1 − αθ)δ. For the parameter sets 4 to 6 we use α = θ. Our394

results for parameter sets 1 to 3 show that the more severe disasters are (the more capital is395

destroyed), the more iterations are necessary, while the accuracy of the algorithm remains396

high. Results for parameter sets 4 to 6 show that convergence is indeed immediate and the397

accuracy almost at the machine’s precision for linear policy functions.398

Our third illustration in Figure 5a shows both the deterministic and the stochastic policy399

functions for the intermediate case of logarithmic preferences, θ = 1, for which no analytical400

solution is known. As shown in Figure 5b the optimal jump term now indeed varies with401

the capital stock and the function C̃(Kt) is decreasing in capital. As before, we iterate until402

convergence, i.e., the change of the policy function between two iterations is sufficiently small403

(cf. Figures 5a and 5b). Because no analytical benchmark solution is available, we now use404

that both the absolute and relative change of the policy function between two iterations have405

the same order of magnitude to conclude that the maximum (absolute) error is roughly 10−8
406

within values for capital between 0 and 150 percent of K∗.407

Finally, we should emphasize three main points: First, convergence does not depend on408

parameter restrictions. The algorithm proves to be stable for a wide range of parameters.409

We restrict the presentation of results only due to lack of space. Second, computational410

requirements are rather small. The solution of the model on a standard laptop requires411

between some seconds and a few minutes. Third, our procedure can be implemented with412

an average ability in computational skills. While the numerical solution of the deterministic413

system is standard, the novel part of it is an interpolation routine based on the Waveform414

Relaxation idea. However, most software packages provide routines for (spline) interpolation.415

The Matlab codes and details of our implementation are summarized in a technical appendix,416

both are available on request.417
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4.1.2 The economic effects of rare disasters418

Asking whether rare disasters lead to higher saving is equivalent to examining whether419

more uncertainty raises or lowers the marginal propensity to consume. It is well established420

that the intertemporal substitution effect depresses the marginal propensity to save for risk-421

averse individuals. The optimum way to maintain the original utility level when uncertainty422

increases is to consume more today (and thus avoid facing the disaster risk). In contrast,423

the income effect is a precautionary savings effect, as higher uncertainty implies a higher424

probability of low consumption tomorrow against which consumers will protect themselves425

the more, by consuming less, the more averse they are to intertemporal fluctuations of426

consumption (cf. Leland, 1968; Sandmo, 1970). By using a nonlinear production technology,427

the neoclassical theory of growth under uncertainty offers a third channel through which428

uncertainty has effects on the asymptotic distribution of capital (cf. Merton, 1975).429

As shown in Weil (1990), the effect on optimal consumption (or saving) depends on430

the magnitude of the intertemporal elasticity of substitution, 1/θ.18 Moreover, optimal431

consumption depends on the degree of curvature of the production technology, α, since the432

curvature of the policy function matters for effective risk aversion (cf. Posch, 2011). In case433

the income effect is relatively small, θ < 1, the presence of rare disasters tends towards434

higher consumption (cf. Figure 3a). For the case where income and substitution effects435

balance each other, θ = 1, the only effect on consumption is due to the concave production436

technology which depresses the marginal propensity to save (cf. Figure 5a), i.e., the mean437

capital stock decreases. It is only when the intertemporal elasticity of substitution is small,438

θ > 1, the precautionary savings motive dominates the substitution effect and eventually439

the effect of the nonlinear production technology, and savings increase (cf. Figure 1a).440

4.2 Lucas’ model of endogenous growth with disasters441

This section uses the Waveform Relaxation algorithm to solve a stochastic version of the442

Lucas (1988) endogenous growth model with two controls and two state variables. Motivated443

by the rare disaster hypothesis, rare events – such as natural disasters – occasionally destroy444

a fraction of the physical capital stock. Our solution method sheds light on the effects on445

optimal consumption, human capital accumulation, and thus the balanced growth rate.446

Specification. Consider a closed economy with competitive markets, with identical agents447

and a Cobb-Douglas technology, yt = kα
t (utht)

1−α, where 0 < α < 1. Suppose at date t,448

workers (normalized to one) have skill level ht and own the physical capital stock, kt. A449

18Weil (1990) shows that risk aversion, by determining the amplitude of the associated reduction in the
certainty equivalent rate of return to saving, only affects the magnitude of the effects described above.
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worker devotes ut of his non-leisure time to current production, and the remaining 1− ut to450

human capital accumulation (improving skills). Hence, the effective aggregate hours devoted451

to production are utht. Denoting wt as the hourly wage rate per unit of effective labor, the452

individual’s labor income at skill ht is wthtut. Let the rental rate of physical capital be rt.453

For simplicity there is no capital depreciation such that kt evolves according to454

dkt = (rtkt + wtutht − ct) dt− γkt−dNt, (16)

where Nt denotes the number of (natural) disasters up to time t, occasionally destroying455

0 < γ < 1 percent of the capital stock kt at an arrival rate λ ≥ 0.456

To complete the model, the research effort 1− ut devoted to the accumulation of human

capital must be linked to ht. Suppose the technology relating the change of human capital

dht to the level already attained and the effort devoted to acquiring more is

dht = (1− ut)ϑhtdt. (17)

According to (17), if no effort is devoted to human capital accumulation, ut = 1, then non457

accumulates. If all effort is devoted to this purpose, ut = 0, ht grows at rate ϑ > 0. In458

between these extremes, there are no diminishing returns to the stock ht.459

The resource allocation problem faced by the representative individual is to choose a time460

path for ct and for ut in Uc ⊆ R+ × [0, 1] such as to maximize expected life-time utility,461

max
{ct,ut}

∞

t=0

E0

∫ ∞

0

e−ρt c
1−θ
t

1− θ
dt s.t. (16) and (17), (k0, h0, N0) ∈ R

3
+, (18)

where θ > 0 denotes constant relative risk aversion and ρ is the subjective time preference.462

Solution. From the Bellman principle, choosing the controls c0, u0 ∈ Uc requires the463

Bellman equation as a necessary condition for optimality,464

ρV (k0, h0) = max
c0,u0∈Uc

{

c1−θ
0 /(1− θ) + (r0k0 + w0u0h0 − c0)Vk + (1− u0)ϑh0Vh

+(V ((1− γ)k0, h0)− V (k0, h0))λ
}

. (19)

For any t ∈ (0,∞), the two first-order conditions corresponding to (3) are465

c−θ
t − Vk = 0, (20)

wthtVk − ϑhtVh = 0, (21)

making the controls a function of the state variables, ct = c(kt, ht) and ut = u(kt, ht).466

After some tedious algebra we obtain the Euler equations for consumption and hours.467

Together with initial and transversality conditions and constraints in (16) and (17), these468
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describe the equilibrium dynamics. We may summarize the reduced form dynamics by469

defining c̃(kt, ht) ≡ c((1− γ)kt, ht)/c(kt, ht) and ũ(kt, ht) ≡ u((1− γ)kt, ht)/u(kt, ht) as470

dkt = (rtkt + wtutht − ct) dt− γkt−dNt, (22a)

dht = (1− ut)ϑhtdt, (22b)

dct =
rt − ρ− λ+ c̃(kt, ht)

−θ(1− γ)λ

θ
ctdt+ (c̃(kt−, ht−)− 1)ct−dNt, (22c)

dut =
(

1−α
α

ϑ+
(

ũ(kt, ht)
−α − (1− γ)1−α

)

(1− γ)αλc̃(kt, ht)
−θ/α− ct/kt + utϑ

)

utdt

+(ũ(kt, ht)− 1)ut−dNt, (22d)

and the transversality condition reads (cf. Benhabib and Perli, 1994, p.117)

lim
t→∞

E0

[

Vke
−ρt[kt − k∗

t ] + Vhe
−ρt[ht − h∗

t ]
]

≥ 0

for all admissible kt and ht, where k∗
t and h∗

t denote the optimal state values.471

Balanced growth. From the reduced form system, we can derive the balanced growth472

rate of physical capital, human capital and consumption of the conditional deterministic473

system (conditioned on no disasters) as follows. First, we can neglect the stochastic integrals474

because for the case with no disasters dNt ≡ 0. Second, similar to the deterministic model,475

the condition optimal research effort is constant, such that dut = 0 must hold.476

Now, for dut = 0 research effort along the balanced growth path is implicitly given by

−ϑu∗ = 1−α
α

ϑ + (ũ−α − (1− γ)1−α) (1 − γ)αλc̃−θ/α − c/k, where ũ ≡ ũ(kt, ht), c̃ ≡ c̃(kt, ht)

and c/k ≡ ct/kt are constants. This property of the jump terms implies that asymptotically,

c̃(kt, ht) = c̃(kt/ht). Similarly, along this balanced growth path the other equations imply

gk = r∗/α− c/k, gh = (1− u∗)ϑ, gc =
(

r∗ − ρ− λ+ c̃−θ(1− γ)λ
)

/θ.

Since ct/kt is constant, ct and kt must grow at the same rate, gk = gc, which in turn implies

c/k =
(

r∗−ρ−λ+ c̃−θ(1−γ)λ
)

/θ+ r∗/α. Along this path we need r∗ to be constant, which

requires that kt and ht grow at the same rate, gk = gh. Hence, r∗/α− c/k = (1−u∗)ϑ. This

pins down the interest rate r∗ = ϑ + (ũ−α − (1− γ)1−α) c̃−θ(1 − γ)αλ. Hence, the balanced

growth rate of the conditional deterministic system is

g ≡
(

ϑ− ρ− λ+ (1− γ)αũ−αc̃−θλ
)

/θ, (23)

which finally implies the consumption-to-capital ratio477

c/k =
(

ϑ+
(

ũ−α − (1− γ)1−α
)

c̃−θ(1− γ)αλ− ρ− λ + c̃−θ(1− γ)λ
)

/θ

+
(

ϑ+
(

ũ−α − (1− γ)1−α
)

c̃−θ(1− γ)αλ
)

/α.
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The growing variables of the reduced-form system ct, ht, and kt in (22) need to be scaled478

such that they approach some stationary steady-state values (scale-adjustment).479

Scale-adjusted dynamics. In what follows, we simply subtract the endogenous balanced480

growth rate (23) from the reduced-form system in instantaneous growth rates to obtain481

scale-adjusted variables. The scale-adjusted system (conditioned on no disasters) reads482

d ln kt = (rt + wtutht/kt − ct/kt − g) dt, (24a)

d lnht = (ϑ− utϑ− g)dt, (24b)

d ln ct =
((

rt − ρ− λ+ c̃(kt, ht)
−θ(1− γ)λ

)

/θ − g
)

dt, (24c)

dut =
(

1−α
α

ϑ+
(

ũ(kt, ht)
−α − (1− γ)1−α

)

(1− γ)αλc̃(kt, ht)
−θ/α− ct/kt

)

utdt

+ϑu2
tdt, (24d)

where g follows iteratively from (23).483

Note that in general it is not possible to compute the steady state levels in terms of484

variables k∗, h∗, c∗, and u∗ from system (24). We presume that the stochastic model inherits485

this characteristic from its deterministic counterpart, which exhibits a ray of steady states,486

i.e., a center manifold of stationary equilibria (cf. Lucas, 1988; Caballé and Santos, 1993).487

Each point on this ray differs with respect to the level of physical and human capital and,488

hence, consumption the economy can generate. The particular stationary equilibrium, to489

which the economy finally converges is determined by the initial values of physical and human490

capital. Since in general the functions c̃ and ũ are not known for the stochastic counterpart491

of the model, we are not able to prove this property for the general case. However, for the492

parametric restriction α = θ we obtain a closed-form solution and indeed provide a proof493

of this property below. Moreover, our numerical results confirm that the stochastic model494

indeed exhibits a ray of steady states. A ‘steady-state’ value in the stochastic setup again495

refers to the value the economy converges if no disasters occur.496

We are now prepared to solve this (scale-adjusted) system using the Relaxation algorithm497

together with the Waveform relaxation idea.498

4.2.1 Evaluation of the algorithm499

We calculate numerical solutions for the Lucas model employing a benchmark calibration for500

which an analytical solution is available. Again, we compare the numerical and analytical501

solutions to evaluate the algorithm’s accuracy. Moreover, we calculate numerical solutions502

for a second calibration for which no analytical solution is available.503

Because this model has two state variables, we choose the Relaxation algorithm to solve504

system (10) (cf. Trimborn et al., 2008). As already mentioned this algorithm is capable of505
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solving deterministic systems with multiple state variables. Moreover, the algorithm can506

also solve models that exhibit a center manifold of stationary equilibria. Since the method507

calculates the solution path as a whole, the particular conditional steady state to which the508

economy converges is determined numerically.509

Our benchmark solution uses the calibration (α, ϑ, λ, γ, ρ) = (0.75, 0.075, 0.2, 0.1, 0.03)510

and the parametric restriction θ = α. As shown in the appendix, in this case consumers511

optimally choose constant hours, ut = u = (ρ − (1 − θ)ϑ)/(αϑ), and optimal consumption512

does not depend on human capital and is linear in physical capital, ct = c(kt, ht) = ϕkt.513

ϕ = (ρ − ((1 − γ)1−θ − 1)λ)/θ denotes the marginal propensity to consume with respect to514

physical capital. Since the policy function is linear in physical capital, the optimal jump515

terms are constant, c̃(kt, ht) = 1− γ and trivially ũ(kt, ht) = 1. Observe that this solution is516

very similar to the neoclassical growth model, though the growth rate is endogenous. From517

(23) we find that for α = θ, the balanced growth rate (in normal times, after the transition)518

is not affected by the presence of rare events, g = (ϑ−ρ)/θ. Below we compare our numerical519

solution obtained by the Waveform Relaxation algorithm with the analytical solution.520

Figures 7a and 7b, respectively, show the optimal level of consumption and the optimal521

jump in consumption with respect to physical capital and human capital. Note that the522

optimal jump in consumption is independent of both physical capital and human capital.523

Similar to the neoclassical growth model, we find that the deterministic policy function for524

consumption (for λ = 0 and/or γ = 0) and the stochastic counterpart differ substantially.525

Moreover, the center manifold of stationary equilibria of (scale-adjusted) values for human526

capital and physical capital is different from the deterministic model.527

Figures 8a and 8b show the absolute and relative error of consumption for the computed528

mesh grid of physical and human capital. Given the nature of the problem, the (absolute)529

errors are extremely small, not exceeding 10−8 in magnitude. As explained above, this level530

of accuracy is higher than what is usually required for most economic applications. Figures531

8c and 8d show the absolute and relative change in the policy function for consumption,532

respectively, compared to the previous iteration. It is apparent that both functions are of533

the same shape and order of magnitude as the numerical errors compared to the analytical534

solution, which helps us to gauge the numerical error of the solution in the general case.535

Similarly to the case of consumption, Figures 9a and 9b show the optimal level of hours536

worked and the optimal jump with respect to physical capital and human capital. Hours537

are independent of capital goods along the transition and, hence, do not adjust in case of a538

Poisson jump. Figures 10a and 10b show the absolute and relative error of hours worked,539

whereas the absolute and relative change in the policy function for hours compared to the540

previous iteration are shown in Figures 10c and 10d, respectively. Again, the maximum541
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(absolute) errors are very small and do not exceed 10−6.542

As an illustration for a case where closed-form solutions are not available, we compare our543

benchmark solution to the case of logarithmic preferences, θ = 1. Figures 11 and 13 show the544

optimal policy functions for consumption and hours and the optimal jump in consumption545

and hours, respectively. We find that the optimal levels and their jump terms now depend546

on the level of physical capital and human capital. While the level of optimal consumption547

is increasing in both capital goods, hours are increasing in human capital but decreasing548

in physical capital. Hence, countries with an abundant supply of human capital but scarce549

supply of physical capital tend to supply the most hours to production.550

Again we would like to emphasize that we are able to calculate policy functions not only551

for the parametric restrictions presented above, but for a wider range of parameter values.552

However, the algorithm is not as stable as for the one-dimensional case and is less precise553

mainly due to interpolation problems. Eventually, for extreme combination of parameter554

values, problems of convergence might occur, or at least the procedure needs refinement with555

respect to the chosen mesh and/or interpolation method. Since our main objective is to show556

that multiple state variables do not pose conceptional problems for our solution method, we557

leave this work for future research. The Matlab codes and details of our implementation are558

summarized in a technical appendix, both available on request.559

4.2.2 The economic effects of rare disasters560

The Lucas model of endogenous growth has several channels through which uncertainty561

enters in the economic decisions, and thus optimal plans will be affected when consumers562

face more uncertainty. First, uncertainty will affect the consumption/saving decision as in the563

neoclassical growth model. Second, uncertainty will enter the optimal allocation problem564

of hours devoted to production and human capital accumulation. Finally, their optimal565

behavior takes account of the effect on the (conditional) balanced growth path.566

As shown in Figures 7a and 11a, the level of (scale-adjusted) consumption increases567

for both calibrations, thus the dominating channel is the intertemporal substitution effect,568

i.e., to consume more today (and thus avoid facing the disaster risk). In other words, the569

intertemporal elasticity of substitution is sufficiently elastic to compensate the precautionary570

savings effect. This is in line with the result from the neoclassical growth model.571

In this model consumption is no longer the only way to accommodate the presence of risk.572

From Figure 13a, for the case of logarithmic preferences with θ = 1, we find that optimal573

hours decrease due to the presence of rare disasters (a level shift). Intuitively, consumers574

prefer to invest more in human capital accumulation which — in contrast to the physical575

capital good — is not subject to disaster risk. Though it seems an intuitive response from576
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an asset pricing perspective, we find that this result cannot be generalized. As from Figure577

9a, optimal hours are independent of the disaster risk. Supplying less hours for production578

also has an income effect, which in the case of α = θ exactly offsets the previous effect.579

This example illustrates that it is important to study the effects of uncertainty within a580

dynamic stochastic general equilibrium (DSGE) model, in order to avoid missing potentially581

important feedback mechanisms when focusing on partial equilibrium effects only.582

As from (23), the balanced growth rate (in normal times, after the transition) depends583

on the optimal jump terms for both consumption and hours. In our numerical solution for584

θ = 1, the balanced growth rate of the deterministic system of (ϑ − ρ)/θ = 4.5% increases585

by roughly 0.2 percentage points to g = 4.7% due to the presence of rare disasters. An586

intuitive explanation of this effect is indeed the shift of optimal hours supplied to human587

capital accumulation, and thus implying a higher growth rate in times without disasters.588

5 Conclusion589

In this paper we propose a simple and powerful method for determining the transitional590

dynamics in continuous-time DSGE models under Poisson uncertainty. Our contribution is591

to show how existing algorithms can be extended with an additional layer when we allow for592

the possibility of rare events in the form of Poisson uncertainty.593

We illustrate the algorithm by computing the stochastic neoclassical growth model and a594

stochastic version of the Lucas model motivated by the Barro-Rietz rare disaster hypothesis.595

We use analytical solutions for plausible parametric restrictions as a benchmark in order596

to address the numerical accuracy. We find that even for non-linear policy functions, the597

numerical error is extremely small.598

From an economic perspective, we show that the simple awareness of the possibility of599

infrequent large economic shocks affects optimal decisions and thus economic growth. The600

effect is economically important and thus needs to be explored in future research.601

An interesting extension of this paper would be to allow for Normal-Poisson uncertainty.602

In fact, the idea of Waveform Relaxation is not limited to the class of models under Poisson603

uncertainty. For models under Normal uncertainty, the Bellman equation reduces to a partial604

differential equation, which is a specific type of a functional differential equation. Studying605

the numerical properties of these models is part of our research agenda.606
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A Analytical benchmark solutions720

A.1 An analytical solution to the neoclassical growth model721

The idea is to provide a guess of the value function and derive conditions under which both722

the first-order condition and the maximized Bellman equation hold (cf. Posch, 2009).723

Suppose that724

V (Kt) =
C1K

1−αθ
t

1− αθ
. (25)

From (14), optimal consumption per effective worker is a constant fraction of income,725

C−θ
t = C1K

−αθ
t ⇔ Ct = C(Kt) = C

−1/θ
1 Kα

t .

Now use the maximized Bellman equation together with CRRA utility u(Ct) = C1−θ
t /(1−θ)726

and insert the solution candidate,727

ρV (Kt) =
C(Kt)

1−θ

1− θ
+ (Kα

t L
1−α − C(Kt)− δKt)VK + (V ((1− γ)Kt)− V (Kt)) λ,

which is equivalent to728

(ρ+ λ)
C1K

1−αθ
t

1− αθ
=

C
− 1−θ

θ

1 Kα−αθ
t

1− θ
+
(

Kα
t L

1−α − C
−1/θ
1 Kα

t − δKt

)

C1K
−αθ
t

+
C1K

1−αθ
t

1− αθ
(1− γ)1−αθλ

⇔ 0 =
θ

1− θ
C

− 1

θ

1 + L1−α − (ρ+ (1− αθ)δ + λ− (1− γ)1−αθλ)
K1−α

t

1− αθ
.

This equation has a solution for C
−1/θ
1 = (θ − 1)/θL1−α and729

ρ = (1− γ)1−αθλ− λ− (1− αθ)δ. (26)

For reasonable parametric calibrations equation (26) is satisfied. Though being a special case,730

a Keynesian consumption function could be an admissible policy function for the neoclassical731

model (cf. also Chang, 1988). Its plausibility is an empirical question.732

A.2 An analyical solution to the Lucas model733

We start with an educated guess on the value function and derive conditions under which it734

actually is the unique solution of the optimal stochastic control problem. Suppose that735

V (kt, ht) =
C1k

1−θ
t + C2h

1−θ
t

1− θ
. (27)
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From (20), we obtain that optimal consumption is a linear function in the capital stock

c−θ
t = C1k

−θ
t ⇒ c(kt, ht) = C

− 1

θ

1 kt. (28)

Similarly, from (21) we obtain the optimal share of hours allocated to production, ut,736

wthtC1k
−θ
t = ϑhtC2h

−θ
t ⇔ u(kt, ht) =

(

ϑ

(1− α)

C2

C1
hα−θ
t kθ−α

t

)− 1

α

,

in which we use wt = (1− α)kα
t (utht)

−α. Observe that for the parametric restriction α = θ,737

optimal hours allocated to production becomes a constant,738

α = θ ⇒ u(kt, ht) =

(

ϑ

(1− α)

C2

C1

)− 1

α

.

Using the maximized Bellman equation, we may write with rt = αkα−1
t (utht)

1−α
739

ρV (kt, ht) =
c(kt, ht)

1−θ

1− θ
+ (kα

t (u(kt, ht)ht)
1−α − c(kt, ht))Vk + (1− u(kt, ht))ϑhtVh

+(V ((1− γ)kt, ht)− V (kt, ht))λ.

Inserting the guess for the value function gives740

(ρ+ λ)
C1k

1−θ
t + C2h

1−θ
t

1− θ
=

c(kt, ht)
1−θ

1− θ
+ (kα

t (u(kt, ht)ht)
1−α − c(kt, ht))C1k

−θ
t

+(1− u(kt, ht))ϑhtC2h
−θ
t +

C1(1− γ)1−θk1−θ
t + C2h

1−θ
t

1− θ
λ.

Now insert the policy function for consumption c(kt, ht),741

(ρ+ λ)
C1k

1−θ
t + C2h

1−θ
t

1− θ
=

C
− 1−θ

θ

1 k1−θ
t

1− θ
+
(

kα
t (u(kt, ht)ht)

1−α − C
− 1

θ

1 kt
)

C1k
−θ
t

+(1− u(kt, ht))ϑC2h
1−θ
t +

C1(1− γ)1−θk1−θ
t + C2h

1−θ
t

1− θ
λ.

Now, we employ the restriction θ = α such that optimal hours are constant, u(kt, ht) = u,742

(ρ+ λ)
C1k

1−θ
t + C2h

1−θ
t

1− θ
=

C
− 1−θ

θ

1 k1−θ
t

1− θ
+
(

u1−αh1−α
t − C

− 1

θ

1 k1−θ
t

)

C1

+(1− u)ϑC2h
1−θ
t +

C1(1− γ)1−θk1−θ
t + C2h

1−θ
t

1− θ
λ.

Collecting terms, we obtain743

(

ρ+ λ− θC
− 1

θ

1 − (1− γ)1−θλ
)

C1k
1−θ
t =

(

(1− θ)u1−α
C1 + (1− θ)(1− u)ϑC2 − (ρ+ λ)C2 + C2λ

)

h1−θ
t .
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Hence, the first constant is pinned down by C1 = (θ/(ρ + λ − (1 − γ)1−θλ))θ. Inserting u744

finally pins down the second constant,745

ρC2 = (1− θ)u1−α
C1 + (1− θ)(1− u)ϑC2

⇔
ρ− (1− θ)ϑ

(1− θ)ϑ
=

α

1− α

(

ϑ

(1− α)

)− 1

α

C
1

α

1 C
− 1

α

2

⇒ C2 =

(

αϑ

ρ− (1− θ)ϑ

)α
1− α

ϑ

(

θ

ρ+ λ− (1− γ)1−θλ

)θ

.

Observe that we solved not only for some balanced growth path, but for the whole transition746

path for a parameter restriction. To summarize, for α = θ we obtain747

c(kt, ht) = c(kt) =
ρ+ λ− (1− γ)1−θλ

θ
kt, (29)

u(kt, ht) = u =
ρ− (1− θ)ϑ

αϑ
. (30)

Hence, individuals prefer relatively more consumption (or less investment) but work the same748

hours compared to the deterministic model for α = θ (a similar condition for deterministic749

Hamiltonian dynamic systems is in Ruiz-Tamarit, 2008). Note that the analytical solution750

to the stochastic extension of the Lucas model is novel.751

B Figures752

B.1 A neoclassical growth model with disasters753
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Figure 1: Policy functions and optimal jump in the neoclassical growth model (i)
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Notes: These figures show (a) the optimal policy functions: deterministic (dashed) vs. stochastic (solid) in the neoclassical
growth model compared to the analytical benchmark solution (dotted), and (b) the optimal jump as a function of capital for
the parameter set 1 from Table 2: (α, θ, δ, λ, γ, ρ) = (0.5, 2.5, 0.05, 0.2, 0.1, 0.0178), which implies a constant saving rate.

Figure 2: Absolute and relative error compared to the analytical benchmark solution and to
the policy function of the last iteration
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Figure 3: Policy functions and optimal jump in the neoclassical growth model (ii)
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Notes: These figures show (a) the optimal policy functions: deterministic (dashed) vs. stochastic (solid) in the neoclassical
growth model compared to the analytical benchmark solution (dotted), and (b) the optimal jump as a function of capital for
the parameter set 4 from Table 2: (α, θ, δ, λ, γ, ρ) = (0.5, 0.5, 0.05, 0.2, 0.1, 0.0178), which implies a linear policy function.

Figure 4: Absolute and relative error compared to the analytical benchmark solution and to
the policy function of the last iteration
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Figure 5: Policy functions and optimal jump in the neoclassical growth model (iii)
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Notes: These figures show (a) the optimal policy functions: deterministic (dashed) vs. stochastic (solid) in the neoclassical
growth model (no analytical benchmark solution available), and (b) the optimal jump as a function of capital for the parameter
set: (α, θ, δ, λ, γ, ρ) = (0.5, 1, 0.05, 0.2, 0.1, 0.0178).

Figure 6: Absolute and relative error compared to the policy function of the last iteration
(no analytical errors available)
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Figure 7: Policy functions and optimal jump for consumption in the Lucas model (1)
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Notes: These figures show (a) the optimal policy functions: deterministic (dashed) vs. stochastic (solid) in the Lucas model
compared to the analytical benchmark solution (dotted), and (b) the optimal jump as a function of physical capital and human
capital for the calibration (α, θ, ϑ, λ, γ, ρ) = (0.75, 0.75, 0.075, 0.2, 0.1, 0.03), which implies a linear policy plane.

Figure 8: Absolute and relative error compared to the analytical benchmark solution and to
the policy function of the last iteration
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Figure 9: Policy functions and optimal jump for hours in the Lucas model (1)
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Notes: These figures show (a) the optimal policy functions: deterministic (dashed) vs. stochastic (solid) in the Lucas model
compared to the analytical benchmark solution (dotted), and (b) the optimal jump as a function of physical capital and human
capital for the calibration (α, θ, ϑ, λ, γ, ρ) = (0.75, 0.75, 0.075, 0.2, 0.1, 0.03), which implies a linear policy plane.

Figure 10: Absolute and relative error compared to the analytical benchmark solution and
to the policy function of the last iteration
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Figure 11: Policy functions and optimal jump for consumption in the Lucas model (2)
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Notes: These figures show (a) the optimal policy functions: deterministic (dashed) vs. stochastic (solid) in the Lucas model
(no analytical benchmark solution available), and (b) the optimal jump as a function of physical capital and human capital for
the calibration (α, θ, ϑ, λ, γ, ρ) = (0.75, 1, 0.075, 0.2, 0.1, 0.03).

Figure 12: Absolute and relative error compared to the policy function of the last iteration
(no analytical errors available)
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Figure 13: Policy functions and optimal jump for hours in the Lucas model (2)
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Notes: These figures show (a) the optimal policy functions: deterministic (dashed) vs. stochastic (solid) in the Lucas model
(no analytical benchmark solution available), and (b) the optimal jump as a function of physical capital and human capital for
the calibration (α, θ, ϑ, λ, γ, ρ) = (0.75, 1, 0.075, 0.2, 0.1, 0.03).

Figure 14: Absolute and relative error compared to the policy function of the last iteration
(no analytical errors available)
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