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C Definitions and Rules of Matrix Differentiation

The following results and their proofs were introduced in Vetter (1973) and later comple-

mented in Brewer (1978). They have been recently used in Chen and Zadrozny (2003) and

Lan and Meyer-Gohde (2013, 2014) for the construction of multidimensional derivative-

based approximations of functional problems without the need of multidimensional arrays

or tensor notation. Similar results have been applied by Gomme and Klein (2011) and

Binning (2013a,b).

Definition 1 (Jabobian matrix). Let x denote an n×1 vector. The first-order derivative

of the vector-valued function g(x) : x→ Rm with respect to the vector x is given by the

m× n Jacobian matrix

gx := Dx>{g (x)} =


∂g1
∂x1

. . . ∂g1
∂xn

...
...

...
∂gm
∂x1

. . . ∂gm
∂xn

 , (C.1)

where > indicates transposition.

Definition 2 (Matrix derivative). Let x denote an n×1 vector. The first-order derivative

of the matrix-valued function G (x) : x→ Rm×n with respect to the vector x is given by

the m× n2 matrix

Gx := Dx>{G (x)} =

[
∂

∂x1

. . .
∂

∂xn

]
⊗G =

[
Gx1 . . . Gxn

]
, (C.2)

where ⊗ denotes the Kronecker product and Gxi is the derivative of the matrix-valued

function G (x) with respect to the scalar xi (i = 1, . . . , n) given by the m× n matrix

Gxi := Dxi{G (x)} =


∂G1,1

∂xi
. . . ∂G1,n

∂xi
...

...
...

∂Gm,1
∂xi

. . . ∂Gm,n
∂xi

 .
The k-th order derivative of the matrix-valued function G (x) : x → Rm×n with

respect to the vector x is given by the m× nm matrix

Gxk := D(x>)k{G (x)} =

([
∂

∂x1

. . .
∂

∂xn

]⊗[k]
)
⊗G, (C.3)

where [. . . ]⊗[k] denotes the k-fold Kronecker product, i.e., [. . . ]⊗ · · · ⊗ [. . . ]︸ ︷︷ ︸
k times

.

Definition 3 (Multidimensional calculus). Let M (x), N (x) and P (x) be, respectively,

p×q, q×u and u×v matrix-valued functions of the n×1 vector x. Moreover, let Q (w (x))
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be a p× q matrix-valued function of the u× 1 vector-valued function w (x). Finally, let

R (Z (Y)) be a p× q matrix-valued function of the u× v matrix-valued function Z (Y),

where Y is an s× t matrix. Then, using definitions (C.1)-(C.3) the following results for

multidimensional calculus hold:

1. Matrix product rule:

Dx>{M (x) N (x)} = Dx>{M (x)} (In ⊗N (x)) + M (x)Dx>{N (x)}, (C.4)

where In is an n× n identity matrix.

2. Matrix chain rule I:

Dx>{Q (w (x))} = Dw>{Q (w (x))} (Dx>{w (x)} ⊗ Iq) , (C.5)

where Iq is a q × q identity matrix.

3. Matrix chain rule II:

DY{R (Z (Y))} = DY{(vec Z)> ⊗ Ip} (It ⊗DvecZ{R}) , (C.6)

where Iq is a q × q identity matrix, and vec is the vectorization operator that

transforms the u× v matrix Z into an uv × 1 vector.

4. Matrix Kronecker product rule:

Dx>{M (x)⊗P (x)} = Dx>{M (x)} ⊗P (x) + (M (x)⊗Dx>{P (x)}) (Kq,n ⊗ Iv) ,

(C.7)

where Kq,n is a qn× qn commutation matrix and Iv is an v× v identity matrix (see

Magnus and Neudecker, 2019).
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D Stochastic optimal control problem

Consider the following infinite horizon discounted stochastic optimal control problem

V (x0) = max
u∈U

E0

 ∞̂
0

e−ρtπ (x,u) dt


subject to

dx = b (x,u; η) dt+
√
ησ (x,u) dw, x(0) = x0 given,

where x ∈ X is the nx×1 vector of state variables from the state space X ⊆ Rnx , u ∈ U is

the nu×1 vector of control variables from the control region U ⊆ Rnu , w is an nw×1 vector

of mutually independent Brownian motions, and η ∈ R+ is a perturbation parameter

rescaling the variance in the model. Further, π : X×U→ R is the reward function, ρ ≥ 0

the discount rate, b : X×U×R+ → Rnx the vector-valued drift function, and σ : X×U→
Rnx×nw is the diffusion matrix defining the nx×nx variance-covariance matrix Σ = σσ>.

Choosing an admissible control u ∈ U and defining V (x) : X → R as the value

function, the Hamilton-Jacobi-Bellman (HJB) equation is given by

ρV (x) = max
u∈U

{
π (x,u) + 1

dt
Et [dV (x)]

}
.

Using Itô’s lemma, it follows that

dV (x) =
(
Vx (x)> b (x,u; η) + 1

2
ηtr
[
σ (x,u)σ (x,u)> Vxx (x)

])
dt+
√
ηVx (x)> σ (x,u) dw,

where tr denotes the trace of a matrix, Vx is the nx× 1 vector of first-order derivatives of

the value function with respect to the state vector, and Vxx is the corresponding nx× nx
matrix of second-order derivatives. Taking the expectation of the integral form and using

the martingale property of Brownian motions yields

Et [dV (x)] =
(
Vx (x)> b (x,u; η) + 1

2
ηtr [Σ (x,u)Vxx (x)]

)
dt,

and the HJB equation becomes

ρV (x) = max
u∈U

{
π (x,u) + Vx (x)> b (x,u; η) + 1

2
η (vec Σ (x,u))> vecVxx (x)

}
,

where we used the relation between the trace of a matrix and the vec operator (see

Magnus and Neudecker, 2019). The first-order conditions read

πu (x,u) + bu (x,u; η)> Vx (x) + 1
2
ηDu{(vec Σ (x,u))>}vecVxx = 0, (D.1)
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making the control variables a function of the state and costate variables u = U (x, Vx, ηVxx) =

U (x), where πu is nu × 1 and bu is nx × nu. Then, the maximized HJB equation reads

ρV (x) = π (x,U (x))+Vx (x)> b (x,U (x) ; η)+ 1
2
η (vec Σ (x,U (x)))> vecVxx (x) . (D.2)

Equations (D.1) and (D.2) determine the unknown optimal value and control functions

in the state space, i.e., V (x) and U (x).

The costate variable follows from the first-order derivative of the maximized HJB

equation (D.2) with respect to the state vector, i.e.,

ρVx (x) = πx (x,U (x)) + Ux (x)> πu (x,U (x))

+Vxx (x) b (x,U (x) ; η) +
(
Inx ⊗ Vx (x)>

)
vec (bx (x,U (x) ; η))

+
(
Inx ⊗ Vx (x)>

)
(Ux (x)⊗ Inx) vec (bu (x,U (x) ; η))

+1
2
η
((

Σx (x,U (x)) + Ux (x)>Du>{(vec Σ (x,U (x)))>}
)

vecVxx (x)

+
(
Inx ⊗ (vec Σ (x,U (x)))>

)
vecVxxx (x)

)
.

Using the envelope theorem together with the properties of the vec operator and of the

Kronecker product, the costate equation becomes

ρVx (x) = πx (x,U (x)) + 1
2
ηΣx (x,U (x)) vecVxx (x) + bx (x,U (x) ; η)> Vx (x)

+ Vxx (x) b (x,U (x) ; η) + 1
2
η
(
Inx ⊗ (vec Σ (x,U (x)))>

)
vecVxxx (x) ,

which can be compactly written as

0 = a (x, Vx, ηVxx) + Vxxb (x, Vx, ηVxx; η) + ηVxxxc (x, Vx, ηVxx) ,

where

a (x, Vx, ηVxx) = πx + 1
2
ηΣx vecVxx + b>x Vx − ρVx

c (x, Vx, ηVxx) = 1
2
vec Σ.
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E The stochastic growth model

E.1 The HJB equation and the first-order conditions

By letting X0 = b = 0 and ξ →∞, the model in Section 2 collapses to

V (K0, A0; η) = max
{Ct}∞t=0

E0

[ˆ ∞
0

e−ρt
C1−γ
t

1−γ dt

]
subject to

dKt = (exp(At)K
α
t − Ct − δKt) dt, K(0) = K0 > 0 given,

dAt = −ρAAtdt+
√
ησ2

AdBA,t, A(0) = A0 given,

where we have included explicitly the perturbation parameter, η, that rescales the amount

of variance in the model.

The HJB equation to the planner’s problem is

ρV (Kt, At; η) = max
Ct∈R+

{
C1−γ
t

1−γ + 1
dt
Et
[
dV (Kt, At; η)

]}
.

Using Itô’s lemma together with the properties of stochastic integrals, the HJB equation

becomes

ρV (Kt, At; η) = max
Ct∈R+

{
C1−γ
t

1−γ + (exp(At)K
α
t − Ct − δKt)VK(Kt, At; η)

− ρAAtVA(Kt, At; η) + 1
2
ησ2

AVAA(Kt, At; η)

}
.

The first-order condition for an interior solution is

C−γt = VK(Kt, At; η), (E.1)

making optimal consumption a function of the state variables and the perturbation pa-

rameter, Ct = C (Kt, At; η).

E.2 Competitive equilibrium and the Euler equation

Substituting the first-order condition yields the maximized HJB equation

ρV (Kt, At; η) = C(Kt,At;η)1−γ

1−γ + (exp(At)K
α
t − C(Kt, At; η)− δKt)VK(Kt, At; η)

− ρAAtVA(Kt, At; η) + 1
2
ησ2

AVAA(Kt, At; η) (E.2)
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from which we can obtain the costate variable for capital (using the envelope theorem) as

ρVK(Kt, At; η) = (exp(At)K
α
t − C(Kt, At; η)− δKt)VKK(Kt, At; η)

+ (α exp(At)K
α−1
t − δ)VK(Kt, At; η)− ρAAtVAK(Kt, At; η) + 1

2
ησ2

AVAAK(Kt, At; η).

Using Itô’s lemma, the evolution of the costate variable, VK , is given by

dVK(Kt, At; η) = VKK(Kt, At; η)dKt + VKA(Kt, At; η)dAt + 1
2
ησ2

AVKAA(Kt, At; η)dt

= (ρ− α exp(At)K
α−1
t + δ)VK(Kt, At; η)dt+ VKA(Kt, At; η)

√
ησ2

AdBA,t,

which describes the dynamics of the marginal utility of consumption. Using the first-order

condition, we obtain

dC−γt = (ρ− α exp(At)K
α−1
t + δ)C−γt dt− γC−γ−1

t CA

√
ησ2

AdBA,t.

After some algebra, the equation above becomes

dCt
Ct

=

[
1
γ

(
α exp(At)K

α−1
t − δ − ρ

)
+ 1

2
(1 + γ)

(
CA
Ct

)2

ησ2
A

]
dt+

(
CA
Ct

)√
ησ2

AdBA,t,

which is the Euler equation for consumption in (50) (see Posch, 2011).

The system of equations formed by (E.1) and (E.2) characterize the unknown func-

tions V (K,A; η) and C(K,A; η) that define the general equilibrium in this economy.

Alternatively, this equilibrium can be obtained from the system of PDEs for the costate

variables, VK and VA, and the first-order condition for consumption.

Notice that since we are only interested in the optimal policy for consumption, the

first-order condition suggests that it is enough to study the solution to system of non-

linear functional equations in the unknown functions {VK(Kt, At; η), C(Kt, At; η)}

0 = (exp(At)K
α
t − C(Kt, At; η)− δKt)VKK(Kt, At; η) + (α exp(At)K

α−1
t − δ)VK(Kt, At; η)

−ρAAtVAK(Kt, At; η) + 1
2
ησ2

AVAAK(Kt, At; η)− ρVK(Kt, At; η),

0 = C(Kt, At; η)−γ − VK(Kt, At; η).

Substitution of the first-order condition into the PDE for the costate variable yields (38)

which can be compactly written as

H (x,y,yx,yxx; η) := a (x,y) + yxb (x,y) + ηyxxc (x,y) = 0,

with y = VK and x = [Kt, At]
>.
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E.3 Approximate solution

We approximate the unknown policy function VK = VK (K,A; η) = VK (x; η) by means

of a Taylor series expansion around the DSS. The latter is given by the solution to (41).

Substituting into the functional H yields the new functional equation

F (x; η) := H (x, VK (x; η) , VKx (x; η) , VKxx (x; η) ; η) = 0.

A first-order perturbation approximation to VK (K,A; η) around the DSS is given by

VK (K,A; η) = VK + VKK
(
K −K

)
+ VKA

(
A− A

)
+ VKηη,

where VK is the DSS value of the costate variable. To find the unknown coefficients VKK

and VKA differentiate F (x; η) = 0 with respect to K and A to obtain

FK (K,A; η) = (α exp(A)Kα−1 + 1
γ
V
−1/γ−1
K VKK − δ)VKK

+(exp(A)Kα − V −1/γ
K − δK)VKKK

+α(α− 1) exp(A)Kα−2VK + (α exp(A)Kα−1 − δ)VKK
−ρAAVAKK + 1

2
ησ2

AVAAKK − ρVKK = 0,

FA (K,A; η) = (exp(A)Kα + 1
γ
V
−1/γ−1
K VKA)VKK + (exp(A)Kα − V −1/γ

K − δK)VKKA

+α exp(A)Kα−1VK + (α exp(A)Kα−1 − δ)VKA
−ρAVAK − ρAAVAKA + 1

2
ησ2

AVAAKA − ρVKA = 0,

which evaluated at the DSS, (K,A, η) = (K,A, 0), become a system of equations in the

unknowns VKK and VKA

FK
(
K,A; 0

)
= (ρ+ 1

γ
VK
−1/γ−1

VKK)VKK + α(α− 1)K
α−2

VK = 0,

FA
(
K,A; 0

)
= (K

α
+ 1

γ
VK
−1/γ−1

VKA)VKK + (δ + ρ)VK − ρAVKA = 0.

Notice that the system formed by FK = FA = 0 is partially decoupled. Hence, we

first solve for VKK from the quadratic equation implied by FK
(
K,A; 0

)
= 0

1
γ
VK
−1/γ−1

VKK
2

+ ρVKK + α(α− 1)K
α−2

VK = 0,

which yields

VKK =
−ρ±

√
ρ2 − 4 1

γ
α(α− 1)K

α−2
VK
−1/γ

2 1
γ
VK
−1/γ−1

.

To ensure that the value function is strictly concave in capital, we choose the root implying
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VKK < 0. Next, we compute VKA from the linear equation formed by FA
(
K,A; 0

)
= 0(

K
α

+ 1
γ
VK
−1/γ−1

VKA

)
VKK + (δ + ρ)VK − ρAVKA = 0,

which yields

VKA = −
(

1
γ
VK
−1/γ−1

VKK − ρA
)−1 (

K
α
VKK + (δ + ρ)VK

)
.

To obtain VKη we differentiate F (x; η) with respect to η and get

Fη (K,A; η) = 1
γ
V
−1/γ−1
K VKηVKK + (exp(A)Kα − V −1/γ

K − δK)VKKη

+(α exp(A)Kα−1 − δ)VKη − ρAAVAKη
+1

2
σ2
AVAAK + 1

2
ησ2

AVAAKη − ρVKη = 0,

which evaluated at the DSS becomes

Fη
(
K,A; 0

)
= 1

γ
VK
−1/γ−1

VKηVKK + 1
2
σ2
AVAAK = 0.

This is a linear inhomogeneous equation in the unknown VKη and its solution is given by

VKη = −1
2
σ2
A

VAAK
1
γ
VK
−1/γ−1

VKK
,

which depends linearly on VK , VKK , and VAAK . The dependence of gη on gx and gxx im-

plies that a first-order approximation to the policy function y = g(x; η) requires further

differentiation of F with respect to x to be complete. Then, to find gxx we compute

FKK (K,A; η) =
(
α(α− 1) exp(A)Kα−2

(
1
γ

+ 1
)

1
γ
V
−1/γ−2
K V 2

KK + 1
γ
V
−1/γ−1
K VKKK

)
VKK

+2
(
α exp(A)Kα−1 + 1

γ
V
−1/γ−1
K VKK − δ

)
VKKK

+
(

exp(A)Kα − V −1/γ
K − δK

)
VKKKK + α(α− 1)(α− 2) exp(A)Kα−3VK

+2α(α− 1) exp(A)Kα−2VKK + (α exp(A)Kα−1 − δ − ρ)VKKK

−ρAAVAKKK + 1
2
ησ2

AVAAKKK = 0,

FKA (K,A; η) =
(
α exp(A)Kα−1 −

(
1
γ

+ 1
)

1
γ
V
−1/γ−2
K VKAVKK + 1

γ
V
−1/γ−1
K VKAA

)
VKK

+
(
α exp(A)Kα−1 + 1

γ
V
−1/γ−1
K VKK − δ

)
VKKA

+
(

exp(A)Kα + 1
γ
V
−1/γ−1
K VKA

)
VKKK +

(
exp(A)Kα − V −1/γ

K − δK
)
VKKKA

+α(α− 1) exp(A)Kα−2VK + α(α− 1) exp(A)Kα−2VKA + α exp(A)Kα−1VKK

+(α exp(A)Kα−1 − δ − ρ)VKKA − ρAVAKK − ρAAVAKKA + 1
2
ησ2

AVAAKKA = 0,
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FAA (K,A; η) =
(

exp(A)Kα −
(

1
γ

+ 1
)

1
γ
V
−1/γ−2
K V 2

KA + 1
γ
V
−1/γ−1
K VKAA

)
VKK

+2
(

exp(A)Kα + 1
γ
V
−1/γ−1
K VKA

)
VKKA

+
(

exp(A)Kα − V −1/γ
K − δK

)
VKKAA + α exp(A)Kα−1VK

+2α exp(A)Kα−1VKA + (α exp(A)Kα−1 − δ − ρ)VKAA

−2ρAVAKA − ρAAVAKAA + 1
2
ησ2

AVAAKAA = 0.

When evaluated at the DSS, the system of equations formed by FKK = FKA = FAA = 0

reduces to the system of linear equations

FKK
(
K,A; 0

)
=

(
α(α− 1)K

α−2
+
(
− 1
γ
− 1
)

1
γ
VK
−1/γ−2

VKK
2

+ 1
γ
VK
−1/γ−1

VKKK

)
VKK

+2
(
ρ+ 1

γ
VK
−1/γ−1

VKK

)
VKKK

+α(α− 1)(α− 2)K
α−3

VK + 2α(α− 1)K
α−2

VKK = 0,

FKA
(
K,A; 0

)
=

(
αK

α−1
+
(
− 1
γ
− 1
)

1
γ
VK
−1/γ−2

VKAVKK + 1
γ
VK
−1/γ−1

VKAA

)
VKK

+
(
ρ+ 1

γ
VK
−1/γ−1

VKK

)
VKKA +

(
K
α

+ 1
γ
VK
−1/γ−1

VKA

)
VKKK

+α(α− 1)K
α−2

VK + α(α− 1)K
α−2

VKA + αK
α−1

VKK − ρAVAKK = 0,

FAA
(
K,A; 0

)
=

(
K
α

+
(
− 1
γ
− 1
)

1
γ
VK
−1/γ−2

VKA
2

+ 1
γ
VK
−1/γ−1

VKAA

)
VKK

+2
(
K
α

+ 1
γ
VK
−1/γ−1

VKA

)
VKKA

+αK
α−1

VK + 2αK
α−1

VKA − 2ρAVAKA − ρVKAA = 0,

from which we recover VAAK to compute VKη and, hence, complete the first-order ap-

proximation to VK(K,A; η).

Using the approximated VK , we obtain a first-order approximation to the consumption

function by linearizing the first-order condition around the DSS. More specifically,

C(K,A, η) = VK(K,A, η)−1/γ

≈ C − 1
γ
VK
−1/γ−1 (

VK − VK
)

= C − 1
γ
VK
−1/γ−1 (

VKK
(
K −K

)
+ VKA

(
A− A

)
+ VKηη

)
= C + CK

(
K −K

)
+ CA

(
A− A

)
+ Cηη,

where C denotes the deterministic steady state for consumption and CK , CA, and Cη are

given, respectively, by (47), (48), and (49).
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E.4 Risky steady state

As shown in Section 3.4, the first-order approximation to the RSS value for the state

variables, (K̂, Â), is given as the solution to exp(Â)K̂α −
(
VK + VKK

(
K̂ −K

)
+ VKA

(
Â− A

)
+ VKη

)−1/γ

− δK̂
−ρAÂ

 =

[
0

0

]
,

from where it follows that Â = 0, and K̂ solves the nonlinear equation

K̂α −
(
VK + VKK

(
K̂ −K

)
+ VKη

)−1/γ

− δK̂ = 0.

Substitution of (K̂, Â) in (42) and (46) yields an approximation to the RSS values for V̂K

and Ĉ, respectively.

Alternatively, an approximate closed-form solution to the first-order RSS can be ob-

tained by first linearizing the drift of the capital stock accumulation equation around the

DSS which yields

b(K,A, VK ; η) = ρ
(
K −K

)
+ exp(A)K

α (
A− A

)
+ 1

γ
VK
−1/γ−1 (

VK − VK
)
.

Next, we substitute the first-order approximation to VK(K,A; η) to obtain

b(K,A; η) =
(
ρ+ 1

γ
VK
−1/γ−1

VKK

) (
K −K

)
+
(

exp(A)K
α

+ 1
γ
VK
−1/γ−1

VKA

) (
A− A

)
+ 1

γ
VK
−1/γ−1

VKηη,

which evaluated at the RSS becomes (using the fact that Â = A = 0)

b(K̂, Â; 1) =
(
ρ+ 1

γ
VK
−1/γ−1

VKK

)(
K̂ −K

)
+ 1

γ
VK
−1/γ−1

VKη = 0.

Then, the RSS value for the capital stock is given by

K̂ = K −
(
ρ+ 1

γ
VK
−1/γ−1

VKK

)−1
1
γ
VK
−1/γ−1

VKη.

Using (47)-(49) we can rewrite the above as

K̂ = K +
(
ρ− CK

)−1
Cη

= K − 1
2
σ2
A

(1+γ)C(CA/C)
2
−CAA

(ρ−CK)CK
,

which shows the dependence of the RSS on the model’s source of risk, σA. Moreover,

concavity of the optimal consumption function implies that K̂ < K as long as ρ > CK .
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F The discrete-time model

This appendix introduces a discrete-time version of the prototype RBC model studied in

the paper. The model follows closely that in Jermann (1998). Table F1 gives a summary

of the model setup in continuous and discrete time. We also provide a summary of the

perturbation method for discrete-time economies in the spirit of Schmitt-Grohe and Uribe

(2004) and Fernández-Villaverde et al. (2016) and stress how certainty equivalence results

from a first-order approximation. Finally, we discuss the concept of the risky steady state

and how to approximate it based on the work by de Groot (2013).

F.1 The social planner’s problem

Consider the problem faced by a social planner with preferences over streams of con-

sumption, Ct, which are summarized by the expected present discounted value of a rep-

resentative agent’s life time utility with subjective discount factor β ∈ (0, 1)

Ũ0 := E0

[
∞∑
t=0

βt
(Ct −Xt)

1−γ

1− γ

]
, (F.1)

We assume that consumption is a non-negative choice that cannot fall below a subsistence

level, Ct ≥ Xt, where Xt denotes internal habits in consumption. Following Grishchenko

(2010), the household’s internal habit is defined as Xt = b̃
∑t−1

s=0 (1− ã)t−s−1Cs, or equiv-

alently,

Xt = b̃Ct−1 + (1− ã)Xt−1. (F.2)

The parameters ã and b̃ share the same interpretation as in the main text, although a

tilde on top of the parameters indicates that their value might not be the same due to

the discrete-time nature of the problem. Note that once again the household preferences

collapse to the standard time-separable case if X0 = b̃ = 0.

The aggregate output of the economy is produced using the Cobb-Douglas technology

Yt = exp (At)K
α
t L

1−α
t , (F.3)

where Kt is the aggregate capital stock, and Lt is the perfectly inelastic labor supply

(normalized to one ∀t ≥ 0). The former accumulates according to

Kt+1 = Φ (It/Kt)Kt + (1− δ)Kt, K0 > 0, (F.4)

where

Φ(It/Kt) = a1
1−1/ξ

(It/Kt)
1−1/ξ + a2, (F.5)

represents capital adjustment costs. The process At describing the evolution of total

13



factor productivity (TFP), exp(At), is assumed to follow the AR(1) process

At+1 = ρ̃AAt + σ̃AεA,t+1, A0 > 0, (F.6)

where ρ̃A ∈ (0, 1) measures the persistence of TFP, σ̃A > 0 its volatility, and εA,t ∼ N (0, 1)

is a TFP shock. Finally, the economy satisfies the aggregate resource constraint

Yt = Ct + It. (F.7)

The problem faced by the social planner is that of choosing the time path for con-

sumption that maximizes (F.1) subject to the dynamic constraints (F.2),(F.4), and (F.6),

and the static constraints (F.3), (F.5), and (F.7):

Ṽ (K0, A0, X0) = max
{Ct≥Xt∈R+}∞t=0

Ũ0 s.t. (F.2)− (F.7), (F.8)

in which Ct ≥ Xt ∈ R+ denotes the control variable at time t ∈ Z, and Ṽ (K0, X0, A0)

the value of the optimal plan (value function) from the perspective of time t = 0. For

any t ∈ {0, 1, 2, . . . }, the Bellman equation is given by

Ṽ (Kt, At, Xt) = max
Ct≥Xt∈R+

{
(Ct−Xt)1−γ

1−γ + βEtṼ (Kt+1, At+1, Xt+1)
}

(F.9)

subject to

Kt+1 = Φ
(

exp(At)Kα
t −Ct

Kt

)
Kt + (1− δ)Kt,

Xt+1 = b̃Ct + (1− ã)Xt,

At+1 = ρ̃AAt + σ̃AεA,t+1.

The first-order condition for an interior solution is

(Ct −Xt)
−γ + b̃βEt

[
ṼX,t+1

]
= Φ′

(
exp(At)Kα

t −Ct
Kt

)
βEt

[
ṼK,t+1

]
, (F.10)

where ṼK,t+1 := ṼK(Kt+1, Xt+1, At+1) and ṼX,t+1 := ṼX(Kt+1, Xt+1, At+1) are the partial

derivatives of the value function with respect to the states K and X. Equation (F.10)

makes optimal consumption a function of the state variables, C?
t = C(Kt, At, Xt).

By means of the envelope theorem, the costate variable with respect to capital is

defined by

ṼK,t = β
(

Φ′
(

exp(At)Kα
t −Ct

Kt

)(
(α− 1) exp(At)K

α−1
t + Ct

Kt

)
+ Φ

(
exp(At)Kα

t −Ct
Kt

)
+ 1− δ

)
Et
[
ṼK,t+1

]
,

14



while with respect to the habit by

ṼX,t = − (Ct −Xt)
−γ + (1− ã) βEt

[
ṼX,t+1

]
.

A solution to the planner’s problem is given by the sequence
{
ṼK,t, ṼX,t, Kt, Xt, At

}∞
t=0

that solves the boundary value problem (with appropriate transversality conditions) char-

acterized by the system of equilibrium stochastic difference equations

ṼK,t = β
(

Φ′
(

exp(At)Kα
t −Ct

Kt

)(
(α− 1) exp(At)K

α−1
t + Ct

Kt

)
+ Φ

(
exp(At)Kα

t −Ct
Kt

)
+ 1− δ

)
Et
[
ṼK,t+1

]
, (F.11)

ṼX,t = − (Ct −Xt)
−γ + (1− ã) βEt

[
ṼX,t+1

]
, (F.12)

Xt+1 = b̃Ct + (1− ã)Xt, (F.13)

Kt+1 = Φ ((exp(At)K
α
t − Ct) /Kt)Kt + (1− δ)Kt, (F.14)

At+1 = ρ̃AAt + σ̃AεA,t+1, (F.15)

together with initial conditions K(0) = K0, X(0) = X0, and A(0) = A0, and where Ct

solves the nonlinear algebraic equation in (F.10).

Table F1 gives a summary of the model setup in continuous and discrete time.

Continuous time Discrete time

Objective function E0

[´∞
0
e−ρt (Ct−Xt)1−γ

1−γ dt
]

E0

[∑∞
t=0 β

t (Ct−Xt)1−γ
1−γ

]
Market clearing exp(At)K

α
t L

1−α = Ct + It exp(At)K
α
t L

1−α = Ct + It

Capital dynamics dKt =
(

Φ
(
It
Kt

)
− δ
)
Ktdt Kt+1 =

(
Φ
(
It
Kt

)
+ (1− δ)

)
Kt

Habit dynamics dXt = (bCt − aXt) dt Xt+1 = b̃Ct−1 + ãXt−1

TFP dynamics dAt = −ρAAtdt+ σAdBA,t At+1 = ρ̃AAt + σ̃AεA,t+1

TFP shock (BA,t+∆ −BA,t) ∼ N (0,∆) εA,t ∼ N (0, 1)

Table F1. Summary of the two modeling frameworks.

F.2 Deterministic steady state

In the absence of uncertainty (σ̃A = 0), the deterministic steady state is defined as

an equilibrium in which all variables in the economy are constant. Hence, given the
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assumptions on the capital adjustment cost function in (F.5), the deterministic steady

state is fully characterized by

A = 0, (F.16)

K =
[
α exp(A)
ρ+δ

] 1
1−α

, (F.17)

C = exp(A)K
α − δK, (F.18)

X = b
a
C, (F.19)

βṼX = − 1
ρ+a

(
C −X

)−γ
, (F.20)

βṼK =
(

1− b
ρ+a

) (
C −X

)−γ
, (F.21)

where ṼX and ṼK denote the deterministic steady-state values of the costate variables

for the capital stock and the habit formation. By setting β = 1/(1 + ρ), and b̃ = b

and ã = a, we ensure that the steady state values of the capital stock and the long-run

habit-to-consumption ratio are equal in the discrete- and continuous-time models.

F.3 Perturbation method

The equilibrium conditions of the model are summarized by equations (F.11)−(F.15).

As in the continuous time case, the policy functions that solve these conditions are not

available in closed form and, therefore, will be approximated using perturbation methods.

Let the augmented stochastic process driving TFP be given by

At+1 = ρ̃AAt + ησ̃AεA,t+1,

where η is the perturbation parameter that controls the standard deviation of TFP shocks

(but not the variance as in the continuous-time model).

Following Schmitt-Grohe and Uribe (2004), the equilibrium conditions can be com-

pactly written as

Et [H(yt+1,yt,xt+1,xt; η)] = 0, (F.22)

where xt = [Kt, Xt, At]
> is the vector of state variables at time t, with initial value x0,

yt =
[
ṼK,t, ṼX,t, ṼA,t, Ct

]>
is the vector of control variables at time t, andH is an operator

that collects the equilibrium conditions (F.11)−(F.15). The deterministic steady state is

then defined as the pair (y,x) that solves

H(y,y,x,x; 0) = 0. (F.23)
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The solution to the discrete-time model in (F.22) takes the form

yt = g(xt; η), (F.24)

xt+1 = h(xt; η) + ησ̃AεA,t+1, (F.25)

where g (·) is a vector of unknown policy functions that maps every possible value of xt

into yt, and h (·) is a vector of unknown policy functions that maps every possible value

of xt into xt+1. Substituting into the functional operator that defines the equilibrium

delivers the new operator

F (xt; η) := Et [H (g(h(xt; η) + ησ̃AεA,t+1; η),g(xt; η),h(xt; η) + ησ̃AεA,t+1,xt; η)] = 0.

(F.26)

A perturbation-based approximation to the solution of the problem (F.22) builds a

Taylor series expansion of the unknown policy functions around the deterministic steady

state using the fact that (F.26) holds for any values of xt and η. The latter implies that

all partial derivatives of the functional F (xt; η) must be zero, i.e.,

Fxki ηj(xt; η) = 0, ∀x, η, i, k, j,

where Fxki ηj(xt; η) denotes the derivative of F with respect to the i-th element in xt taken

k times, and with respect to η taken j times evaluated at (xt; η).

A first-order approximation to the policy functions is defined by

g(xt; η) = g(x; 0) + gx(x; 0)(xt − x) + gη(x; 0)η,

h(xt; η) = h(x; 0) + hx(x; 0)(xt − x) + hη(x; 0)η,

where g(x; 0) and h(x; 0) correspond to the deterministic steady-state values of the con-

trol and state variables derived from (F.23), and where the constants gx(x; 0), hx(x; 0),

gη(x; 0), hη(x; 0) can be determined by solving the system of equations formed by

Fxi(x; 0) = 0 ∀i,

Fη(x; 0) = 0.

We refer to the first set of equations (those not involving the perturbation parameter) as

the perfect-foresight component of the approximation, and to the second set of equations

as the stochastic component of it (cf. Andreasen and Kronborg, 2018). The system of

equations resulting from the perfect-foresight component is quadratic in the unknowns

gx(x; 0) and hx(x; 0). We pick the solution ensuring stability of the model’s endogenous

variables, i.e., the stable manifold (cf. Blanchard and Kahn, 1980; Klein, 2000). The re-

maining constants, gη(x; 0) and hη(x; 0), correspond to the solution of the system of equa-
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tions formed by the stochastic component, the unique solution being gη(x; 0) = hη(x; 0) =

0 (cf. Schmitt-Grohe and Uribe, 2004; Fernández-Villaverde et al., 2016). Hence

g(xt; η) = g(x; 0) + gx(x; 0)(xt − x), (F.27)

h(xt; η) = h(x; 0) + hx(x; 0)(xt − x), (F.28)

implying that up to a first order, the approximation exhibits certainty equivalence, i.e.,

the solution of the model is identical to the solution of the same model in the absence of

uncertainty, η = 0.

Similarly, a second-order approximation to the policy functions is defined as

g(xt; η) = g(x; 0) + gx(x; 0)(xt − x) + gη(x; 0)η

+ 1
2
gxx(x; 0)(xt − x)⊗ (xt − x) + gxη(x; 0)(xt − x)⊗ η + 1

2
gηη(x; 0)η2,

and

h(xt; η) = h(x; 0) + hx(x; 0)(xt − x) + hη(x; 0)η

+ 1
2
hxx(x; 0)(xt − x)⊗ (xt − x) + hxη(x; 0)(xt − x)⊗ η + 1

2
hηη(x; 0)η2,

where the definition of the matrices gxx(x; 0), hxx(x; 0), gηη(x; 0), and hηη(x; 0) can be

found in Binning (2013a). These unknown coefficients correspond to the solution of the

system of equations formed by

Fxixj(x; 0) = 0 ∀i, j,

Fηη(x; 0) = 0.

As shown in Schmitt-Grohe and Uribe (2004), the cross derivatives gxη and hxη evaluated

at (x; 0) are zero, and hence the second-order perturbation reduces to

g(xt; η) = g(x; 0) + gx(x; 0)(xt− x) + 1
2
gxx(x; 0)(xt− x)⊗ (xt− x) + 1

2
gηη(x; 0), (F.29)

h(xt; η) = h(x; 0) + hx(x; 0)(xt−x) + 1
2
hxx(x; 0)(xt−x)⊗ (xt−x) + 1

2
hηη(x; 0). (F.30)

Hence, solving a second-order approximation introduces a constant correction in the

policy functions that account for the effects of risk given by gηη(x; 0) and hηη(x; 0), while

the slopes of the policy functions are not affected by risk as gxη(x; 0) = hxη(x; 0) = 0.
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F.4 Calibration

For the numerical exercises presented in the paper we calibrate the discrete-time model as

we do in the continuous time case. In particular, we set the risk aversion parameter and

the share of capital income to γ = 2 and α = 0.36, respectively. The annual values for

the subjective discount rate and the depreciation rate are fixed to β = 1/(1+ρ) = 0.9606

and δ = 0.0963, respectively. For the habit process we use a = 1 and b = 0.82, while

the adjustment cost parameter is calibrated to ξ = 0.3261. Finally, following Christensen

et al. (2016), the annual values for the persistence and volatility of the TFP are set to

ρ̃A = 0.8145 and σ̃A = 0.0278, respectively.

F.5 Risky steady state

Following de Groot (2013), it is possible to approximate the risky steady state of a

discrete-time economy by making use of the second-order approximation around the de-

terministic steady state. First, consider the second-order approximation to the transition

equation for the state variables in (F.30)

xt+1 = h(x; 0) + hx(x; 0)(xt − x) + 1
2
hxx(x; 0)(xt − x)⊗ (xt − x) + 1

2
hηη(x; 0) + σ̃AεA,t+1.

By setting the random disturbances to zero, εA,t+1 = 0, we compute the risky steady-state

value of the state variables as the vector x̂ that satisfies xt+1 = xt = x̂, and thus solves

the quadratic equation

x̂ = x + hx(x; 0)(x̂− x) + 1
2
hxx(x; 0)(x̂− x)⊗ (x̂− x) + 1

2
hηη(x; 0).

Once x̂ is computed, it is possible to back out the implied risky steady-state values for

the control variables, ŷ, by simply inserting x̂ into (F.29)

ŷ = y + gx(x; 0)(x̂− x) + 1
2
gxx(x; 0)(x̂− x)⊗ (x̂− x) + 1

2
gηη(x; 0).

The corresponding risky steady state values for habit, capital stock, and consumption

resulting from the calibration in Section F.4 are X̂ = 1.0608, K̂ = 4.7184, and Ĉ =

1.2936, respectively.
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G Policy and Impulse-Response functions

For comparison purposes, this appendix reports the policy and impulse-response functions

(IRF) obtained from the discrete-time model in Appendix F. They are computed using

the software platform Dynare.

Figure G1 compares approximated policy functions for consumption across orders of

approximation; on the left-hand side (LHS) for the continuous time case and on the

right-hand side (RHS) for the discrete time case. Note that our calibration implies iden-

tical DSS across time assumptions. While the discrete-time first-order policy function

for consumption (solid line, RHS) goes through the DSS (approximation point) due to

certainty equivalence, the continuous-time First-Order approximation (solid line, LHS)

that breaks certainty equivalence does not. Only by shutting down the risk-correction,

the continuous-time First-Order (CE) approximation (dotted line, LHS) will go through

the DSS. Hence, as claimed in the main text, in this respect the First-Order (CE) resem-

bles the first-order approximation in discrete time. Further, note that in continuous time

the First-Order approximation is close to the Second-Order approximation (dashed line,

LHS) in the neighborhood of the DSS, while in discrete time this is not the case.

0.85 0.90 0.95 1.00 1.05 1.10 1.15
1.26

1.27

1.28

1.29

1.3

0.85 0.90 0.95 1.00 1.05 1.10 1.15
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1.28
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1.3

Figure G1. Continuous- and discrete-time approximated policy functions. First-
and second-order approximations of the policy function for consumption around the DSS along
the capital lattice while keeping habit and productivity at their DSS values, C

(
K,X,A

)
. A

circle denotes the DSS, a star the first-order approximation and a square the second-order
approximation of the RSS.
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Figure G2 plots the approximated IRFs for consumption to a one standard deviation1

shock in TFP across orders of approximation: on the LHS the continuous time case and

on the RHS the discrete time case. As the first-order approximation in discrete time

(solid line, RHS) is certainty equivalent, the corresponding IRF starts in the DSS, where

it also converges to. A similar shape is observed for the IRF from the First-Order (CE)

approximation in continuous time (dotted line, LHS). Again, in discrete time we observe

a large difference between first- and second-order approximated IRFs (solid vs. dashed

line, RHS), since only the second-order approximation is risk-sensitive. In contrast, the

differences between the IRFs resulting from the First- and Second-Order approximation

in continuous time (solid vs. dashed line, LHS) are minor reflecting the fact that both

approximations of the policy function are similar in the neighborhood of the DSS (see

Figure G1).
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Figure G2. Comparison of IRFs to a shock in TFP. It plots the impulse response
functions (IRFs) for the first- and second-order approximations of the policy function for con-
sumption in continuous and discrete time. The variables in the economy are assumed to be in
their corresponding DSS or RSS before the shock hits. A circle denotes the DSS, a star the
first-order approximation and a square the second-order approximation of the RSS.

1More precisely, for ease of comparison, we impose in both time assumptions an impulse of one
standard deviation of the continuous-time model, i.e., σA = 0.0307.
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H Additional results

H.1 Pricing errors

Figure H1 reports the percentage (absolute) pricing errors for different approximations

under the assumption that the true data generating process is given by the global ap-

proximation to the nonlinear stochastic model. The First-Order (CE), First-Order and

Second-Order have been already introduced in Figure 3 in the main text.
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Figure H1. Decomposition of pricing errors. The graph plots the pricing errors resulting
from First-Order (CE), First-Order, Nonlinear (CE), Second-Order, and the difference between
the first two assuming that the true data generating process is the nonlinear stochastic solution.

The pricing error generated by the First-Order (CE) can be decomposed into: (i) the

error stemming from the linearization of the nonlinear and stochastic policy function,

which is captured by the First-Order approximation, and (ii) the error stemming from

the imposition of certainty equivalence in the linear world. The latter is captured by the

difference between First-Order (CE) and First-Order, and it is represented by the black

line with diamonds: it measures the fraction of the pricing error that can be attributed to

the imposition of certainty equivalence when using the First-Order (CE) solution. This

measure can alternatively be interpreted as the reduction in the pricing errors that will

be induced by the use of the (risk-sensitive) First-Order approximation.

Figure H1 presents an additional breakdown of the pricing errors generated by the

use of the First-Order (CE). In particular, it is possible to decompose this error into

(i) the error stemming from imposing certainty equivalence in the nonlinear world, and

(ii) the error stemming from linearization in the presence of certainty equivalence. The
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former is given by the approximation of the policy function using a global method in a

deterministic environment (Nonlinear CE, blue line with circles), while the latter would

be given by the difference between the Nonlinear CE and the First-Order (CE).

By comparing the black line with diamonds and the blue line with circles, we can

infer the effects from imposing certainty equivalence on the quality of the approximation.

The first one provides a measure of this error in the linearized world, while the second

one does it in the nonlinear world. The results suggest that the error reduction one

would obtain from using the First-Order approximation is very close to the error one

makes when imposing certainty equivalence in the nonlinear global solution. This can be

interpreted as our First-Order approximation removing all of the error stemming from

certainty equivalence such that all the remaining error can be attributed to linearization

and, thus, is inevitable. Therefore, the First-Order approximation in continuous time

makes it possible to account for the effects of risk in a linear framework.

H.2 HJB equation errors

Following Judd and Guu (1993) and Parra-Alvarez (2018), we compute the unit-free HJB

equation errors (HJB residuals) to assess the numerical accuracy of the approximation

obtained by the perturbation method. This approach, which is similar to the Euler

equation errors commonly reported in the discrete-time literature (see e.g. Aruoba et al.,

2006), measures how much the HJB equation deviates from zero at a predefined set of

values for the state variables. Therefore, the HJB equation errors can be regarded as a

measure of optimization errors that indicate the welfare loss from suboptimal behavior

due to numerical approximation errors.

For any admissible value of the state variables, the HJB residual measures how close

to zero the HJB equation is when using method m to approximate the unknown policy

functions. For the prototype economy of Section 2, the normalized or unit-free HJB

residual is defined as

R
(m)
HJB(K,X,A) =

(
ρV̄
)−1

[
(C(m)(K,X,A)−X)1−γ

1− γ

+(Φ((exp(A)Kα − C(m)(K,X,A))/K)− δ)KV (m)
K (K,X,A)

+(bC(m)(K,X,A)− aX)V
(m)
X (K,X,A)− ρAAV (m)

A (K,X,A)

+1
2
σ2
AV

(m)
AA (K,X,A)− ρV (m)(K,X,A)

]
, (H.1)

for all (K,X,A). Notice that RHJB(K,X,A) = 0 for all (K,X,A) when evaluated at the

true policy functions.

Table H1 summarizes the HJB residuals for the different approximations to the un-
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Approximation (m) Average HJB residual Max HJB residual

First-Order (CE) −2.9737 −0.8747
First-Order (CE, LL) −2.7101 −0.8274
First-Order −2.8809 −0.8926
First-Order (LL) −2.9969 −0.8396
Second-Order −3.6630 −1.1846
Collocation −4.7526 −3.4950

Table H1. HJB equation errors. The table reports the average HJB residuals, E1, and the
maximum HJB residual, E∞, for each of approximation method m over the hypercube formed
by [0.85K̄, 1.15K̄]× [0.85X̄, 1.15X̄]× [0.9eĀ, 1.1eĀ].

known policy functions C(K,X,A), VK(K,X,A), VX(K,X,A), VA(K,X,A). It reports

the log10 magnitude of the following measures:

E
(m)
1 = 1

nKnXnA

nK∑
j=1

nX∑
i=1

nA∑
k=1

R
(m)
HJB(Kj, Xi, Ak), and E(m)

∞ = max
i,j,k

R
(m)
HJB(Kj, Xi, Ak),

where E
(m)
1 is the average HJB residual, and E

(m)
∞ is the maximum HJB residual, com-

puted over a predefined state-space with nK points in the capital stock lattice, nX points

in the habit lattice, and nA points in the TFP lattice. Sometimes, E
(m)
∞ is preferred since

it bounds the error made by using a given approximation (cf. Aruoba et al., 2006). A

value of -3 indicates that for every thousand units of life-time utils, the agent makes an

error of 1 unit of life-time utils by using a given approximation.

The results show that the collocation method produces lower HJB residuals than those

generated by (local) perturbation methods. Besides the approximations discussed in the

main text, we also report, under the headings First-Order (CE,LL) and First-Order (LL),

the HJB residuals obtained when computing the first-order perturbation approximation

on the logs of the unknown functions instead of their levels. They produce HJB resid-

uals that are of the same order of magnitude of those produced when approximating

the levels. Finally, while {V (K,X,A), C(K,X,A)} in (12) provide necessary and suffi-

cient conditions for an optimum, the functions {VK(K,X,A), VX(K,X,A), VA(K,X,A),

C(K,X,A)} for the system (13) to (16) only provide necessary conditions. However, the

small HJB residuals generated by all the approximations indicate that the solution also

satisfy both the HJB equation and the first-order conditions.
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