
Risk Matters: Breaking Certainty Equivalence

in Linear Approximations

Juan Carlos Parra-Alvareza

Aarhus University

Hamza Polattimurb

Universität Hamburg

Olaf Poschc

Universität Hamburg

June 5, 2021

Abstract

In this paper we use the property that certainty equivalence, as implied by a first-

order approximation to the solution of stochastic discrete-time models, breaks in its

equivalent continuous-time version. We derive a risk-sensitive first-order perturba-

tion solution for a general class of rational expectations models. We show that risk

matters economically in a real business cycle (RBC) model with habit formation

and capital adjustment costs, and that neglecting risk leads to substantial pricing

errors. A first-order perturbation provides a sensible approximation to the effects

of risk in continuous-time models. It reduces pricing errors by around 90 percent

relative to the certainty equivalent linear approximation.
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1 Introduction

There is a consensus among economists that uncertainty affects the consumption-saving

decision of individuals. Neglecting the effects of risk in macroeconomics and finance often

generates substantial pricing errors. Hence, recent research is concerned with the abil-

ity of local approximations of nonlinear stochastic macroeconomic models to account for

risk, with a particular focus on perturbation methods originally introduced in economics

by Judd and Guu (1993). Although perturbation-based methods only provide local pre-

cision around a particular point, usually the model’s deterministic steady state, many

authors suggest that they can generate high levels of accuracy, comparable to that deliv-

ered by global approximation techniques, as the order of the approximation is increased

(see Judd, 1998; Aruoba et al., 2006; Caldara et al., 2012; Parra-Alvarez, 2018). In many

applications, however, we are interested in the first-order perturbation and the resulting

linear approximation of the equilibrium conditions. A linear structure not only provides

analytical insights and helps to understand key features of the model, but also facilitates

its estimation, e.g., by means of the Kalman filter (see Harvey and Stock, 1985; Singer,

1998; Harvey, 2006; Fernández-Villaverde and Rubio-Ramı́rez, 2007).

A known limitation of the first-order perturbation around the deterministic steady

state is that the approximate solution of discrete-time models typically exhibits certainty

equivalence (see Simon, 1956; Theil, 1957). In other words, the first-order approximation

to the solution of stochastic economic models with forward-looking agents is identical to

the solution of the same model under perfect foresight. The direct implication is that the

solution becomes invariant to higher-order moments of the underlying shocks. Therefore,

this paper addresses the following questions. What are the costs of neglecting the effects

of risk in linear approximations? Put differently, what would be the benefits of using a

linear approximation that is not certainty equivalent? In particular, by how much could

such an approximation reduce the errors that one makes when not accounting for risk?

How can these errors be interpreted in an economically meaningful way?

Certainty equivalence prevails in the classical linear-quadratic optimal control prob-

lem, popularized in economics by Kydland and Prescott (1982) and Anderson et al.

(1996). In the early 1950s the introduction of certainty equivalent stochastic control prob-

lems with quadratic utility and linear constraints aimed at providing a practical solution

for decision problems under uncertainty. Even today, if risk is negligible for the research

question at hand, certainty equivalent solutions are still useful. In this case, one may

conclude that “certainty equivalence is a virtue” (see Kimball, 1990a). Conversely, when

there is a reason to believe that the effects of risk are important, one notices that “cer-

tainty equivalence is a vice”. Thus, if risk matters, breaking certainty equivalence is de-

sired in order to account for the effects of risk. As discussed in Fernández-Villaverde et al.

(2016), the approximated solution of the model under certainty equivalence (i) makes it
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difficult to talk about the welfare effects of uncertainty; (ii) cannot generate any risk

premia for assets; and (iii) prevents analyzing the consequences of changes in volatility.

To break the property of certainty equivalence in the class of perturbation meth-

ods, economists have restored to the computation of higher-order Taylor expansions, the

underlying apparatus behind any perturbation method, which translate into nonlinear

approximations of the model’s solution. Originally proposed in Judd and Guu (1993),

higher-order approximations became popular with the work of Schmitt-Grohe and Uribe

(2004) for second-order approximations, and that of Andreasen (2012) and Ruge-Murcia

(2012) for third-order approximations. More recently, Levintal (2017) extended the per-

turbation package to include fifth-order approximations. However, the use of high-order

approximations for medium-scale macroeconomic models (i) could be computationally

expensive, (ii) often results in explosive solutions, and (iii) requires computationally de-

manding nonlinear estimation methods, such as the particle filter, for the estimation of

the model’s structural parameters.1

In contrast to stochastic discrete-time models, certainty equivalence breaks in the first-

order approximation when time is assumed to be continuous (see Judd, 1996; Gaspar and

Judd, 1997). This property, which allows us to account for risk in a linear world, is the

product of two complementary results. First, while in discrete time the approximation is

built inside the system of expectational equations that collects the equilibrium conditions

of the economy, in continuous time we may use Itô’s lemma to eliminate the expectation

operator prior to the construction of the approximation. The resulting non-expectational

system of equations, although deterministic, will capture the effects of uncertainty by

including information on the sensitivity to risk of the yet unknown solution (see Chang,

2009). Second, as shown in Fleming (1971), who provides the mathematical foundations

of perturbation methods for continuous-time stochastic optimal control problems, reg-

ular perturbation theory produces asymptotically valid approximations of the unknown

solution when the variance of the shocks is used as perturbation parameter. As discussed

in Jin and Judd (2002), this choice of the perturbation parameter follows basic economic

intuition, whereby optimal behavior of agents is affected by the variance in the economy.

This is in contrast to discrete-time models where the appropriate perturbation parameter

is shown to be the standard deviation (cf. Judd, 1998, Jin and Judd, 2002, Fernández-

Villaverde et al., 2016). Combining these two results, the linear approximation to the

model’s solution, which results from a first-order perturbation around the deterministic

steady state, will exhibit a constant correction term that depends on the variance of the

shocks that drive the dynamics of the economy.

In this paper, we revisit the ability of a first-order perturbation to capture the ef-

1See Kim et al. (2008) for a discussion on point (ii). Lan and Meyer-Gohde (2013) introduce a
nonlinear infinite moving-average representation of the policy functions that eliminates the possibility
for explosive behavior in higher-order approximations. Meyer-Gohde (2015) shows that it is possible to
overcome (iii) by using linear approximations around the stochastic steady state or ergodic mean.
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fects of risk. First, we derive a first-order perturbation solution for a general class of

dynamic, continuous-time, rational expectations models, thereby formalizing the frame-

work in Gaspar and Judd (1997) and Parra-Alvarez (2018). We show analytically that,

as opposed to discrete-time models, the first derivative of the policy function with re-

spect to the perturbation parameter is different from zero at the deterministic steady

state implying that the resulting linear approximation is risk-sensitive, i.e., it breaks the

certainty-equivalence property. More specifically, the first-order perturbation corrects for

risk through an additional constant term that incorporates information on the slope and

curvature of the optimal policy functions at the deterministic steady state. Second, we

explore how the effects of uncertainty are internalized by this perturbation approach us-

ing as a benchmark an RBC model with habit formation and capital adjustment costs

à la Jermann (1998). By calibrating the parameters of the model to values that are

standard in the literature, we compare, along different dimensions, the first-order cer-

tainty equivalent (CE) and the risk-sensitive first-order approximations obtained from

perturbation to a second-order nonlinear approximation and a global solution obtained

by collocation methods. We show that each of the approximations converges to different

long-run equilibria in the absence of shocks. While the first-order CE converges to the

deterministic steady state, the risk-adjusted solutions converge to their respective risky

steady states. This property is reflected in the policy and impulse response functions.

We find that the risk effects captured by the first-order approximation in continuous

time are economically significant. We assess the asset pricing implications of the approxi-

mations using a partial differential equation approach rather than the standard simulation

approach used in discrete time. When relying on the linear CE solution, the pricing errors

made on a three month zero-coupon bond are about 1 dollar for each 100 dollar spent

at the deterministic steady state. The risk-adjustment of the first-order perturbation ap-

proximation leads to errors of about 10 cents for each 100 dollar spent, reducing pricing

errors by about 90%. Hence, we conclude that the risk-sensitive first-order perturbation

provides a sensible approximation to the effects of risk in continuous-time models.

Our work relates to that of Collard and Juillard (2001), Coeurdacier et al. (2011),

de Groot (2013), Meyer-Gohde (2015) and Lopez et al. (2018), who compute first-order

approximations around the model’s risky steady state instead of the deterministic steady

state in order to break certainty equivalence in discrete-time models. Collard and Juil-

lard (2001) consider a bias reduction procedure to compute the approximation around the

risky steady state; Coeurdacier et al. (2011), whose approach is generalized by de Groot

(2013), approximate the risky steady state based on the second-order solution. Meyer-

Gohde (2015) constructs a risk-sensitive linear approximation using policy functions re-

sulting from higher-order perturbations. Lopez et al. (2018) differ from the previous

studies as they consider lognormal affine approximations, often used in macro-finance,

which are shown to be a special case of a first-order perturbation around the risky steady
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state. We argue that it is possible to account for risk in an economically meaningful way

using standard first-order (linear) perturbations around the deterministic steady state

when time evolves continuously.

The rest of the paper is organized as follows. In Section 2, we introduce our model and

define the equilibrium conditions used in the perturbation method to approximate the

solution. Section 3 summarizes the perturbation approach, presents the main theoretical

contribution of the paper, and revisits the certainty equivalence property of linear models.

Section 4 derives the pricing implications of the approximated solution and introduces a

pricing error measure that can be used to evaluate the accuracy of the approximation.

Section 5 discusses the main results by comparing policy functions, impulse-response func-

tions, and pricing errors for the different approximations. Finally, Section 6 concludes.

2 A prototype RBC model

For illustration, we use a continuous-time version of the real business cycle (RBC) model

introduced in Jermann (1998). There is a single good in the economy that is produced

using a constant-returns-to-scale production technology that is subject to random shocks

in productivity. Changes in the economy’s aggregate capital stock are subject to adjust-

ment costs, and the household preferences exhibit intertemporal non-separabilities due

to internal habit formation in consumption.

Preferences. The economy is inhabited by a large number of identical households that

maximize their expected discounted lifetime utility from consumption, Ct,

U0 := E0

[ˆ ∞
0

e−ρtu (Ct, Xt) dt

]
, (1)

where E0 [·] is the expectation operator conditional on the information available at time

t = 0, ρ ≥ 0 is the household’s subjective discount rate, and u is the instantaneous utility

function. For simplicity we assume that

u (Ct, Xt) =
(Ct −Xt)

1−γ

1− γ
, (2)

where γ measures the curvature of the utility function (together with the consumption

surplus ratio), such that a higher value of γ yields higher risk aversion. In what follows,

we assume that the consumption choice is non-negative, Ct ≥ 0, and does not fall below

a subsistence level of consumption, Ct ≥ Xt, where Xt denotes habits in consumption.

The habit level in consumption is defined endogenously (internal habit) in the model, in

contrast to the relative consumption model or ‘catching up with the Joneses’ (external

habit), where habit is given by aggregate consumption and is thus exogenous to the
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households. In particular, the habit process is given by Xt = e−atX0 + b
´ t
0
ea(s−t)Csds,

or equivalently,

dXt = (bCt − aXt)dt, with X(0) = X0 ≥ 0 given. (3)

Hence, Xt is a weighted sum of past consumption, with weights declining exponentially

into the past. The parameter a measures the degree of persistence in the habit stock,

such that the larger is a, the less weight is given to past consumption in determining Xt,

and vice versa. The parameter b is a scaling parameter. The special case b = X0 = 0

corresponds to the case of time-separable utility with constant relative risk aversion (see

Constantinides, 1990).

Technology. The one good in the economy is produced according to the Cobb-Douglas

production function

Yt = exp(At)K
α
t L

1−α
t , 0 < α < 1, (4)

where Kt is the aggregate capital stock, Lt is the perfectly inelastic labor supply (nor-

malized to one for all t ≥ 0), and At is a stochastic process that drives total factor

productivity (TFP). The aggregate capital stock in the economy increases if effective

investment exceeds depreciation

dKt = (Φ(It/Kt)− δ)Ktdt, with K(0) = K0 > 0 given, (5)

where δ ≥ 0 is the depreciation rate, and It is aggregate investment. Following Jermann

(1998), the capital adjustment cost function is defined by

Φ(It/Kt) =
a1

1− 1/ξ
(It/Kt)

1−1/ξ + a2, (6)

where ξ > 0 denotes the elasticity of the investment-to-capital ratio with respect to

Tobin’s q, and a1 ≥ 0 and a2 ≥ 0 are parameters. In line with Boldrin et al. (2001),

we set a1 = δ1/ξ and a2 = δ/(1 − ξ) such that the steady state is invariant to ξ, and

hence the long-run investment-to-capital ratio equals the deprecation rate.2 The process

At is assumed to follow an Ornstein-Uhlenbeck process with mean reversion ρA > 0 and

variance σA > 0

dAt = −ρAAtdt+ σAdBA,t, with A(0) = A0 ∈ R given, (7)

where BA,t is a standard Brownian motion. In equilibrium, the economy satisfies the

aggregate resource constraint

Yt = Ct + It. (8)

2Given this parameterization it can be shown that in the steady state: Φ(Ī/K̄) = Φ(δ) = δ, Φ′(Ī/K̄) =
Φ′(δ) = 1, and Φ′′(Ī/K̄) = Φ′′(δ) = −1/(ξδ), i.e. the slope of Φ′ depends negatively on ξ and δ.
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Optimality conditions. Consider the problem faced by a social planner who has to

choose the path of consumption that maximizes (1) subject to the dynamic constraints

(3), (5), and (7), and the static constraints (4), (6), and (8)

V (K0, X0, A0) = max
{Ct≥Xt∈R+}∞t=0

U0 s.t. (3)− (8), (9)

in which Ct is the control variable at time t ∈ R+, and V (K0, X0, A0) is the value of the

optimal plan (value function) from the perspective of time t = 0, i.e., when the state of

the economy is described by the time t = 0 values for the capital stock, K0, the stock of

habits, X0, and the productivity process, A0.

As shown in Appendix A, the Hamilton-Jacobi-Bellman (HJB) equation associated

with the stochastic optimal control problem in (9) is

ρV = max
Ct≥Xt∈R+

{
(Ct −Xt)

1−γ

1− γ
+ (Φ((exp(At)K

α
t − Ct)/Kt)− δ)KtVK

+ (bCt − aXt)VX − ρAAtVA + 1
2
σ2
AVAA

}
, (10)

where VK := ∂V (Kt, Xt, At)/∂Kt, VX := ∂V (Kt, Xt, At)/∂Xt, VA := V (Kt, Xt, At)/∂At,

and VAA := ∂2V (Kt, Xt, At)/∂A
2
t denote the first- and the second-order partial deriva-

tives of the value function V := V (Kt, Xt, At) with respect to the states of the economy.3

The first-order condition for any interior solution reads

(Ct −Xt)
−γ + bVX = Φ′

(
exp(At)K

α
t − Ct

Kt

)
VK , (11)

making optimal consumption a function of the state variables, Ct = C(Kt, Xt, At). The

function C (·) maps every possible value of the states of the economy at time t into

optimal consumption at time t.

Competitive equilibrium. The general equilibrium in this economy is characterized by

the maximized HJB equation

ρV =
(C(Kt, Xt, At)−Xt)

1−γ

1− γ
+ (Φ((exp(At)K

α
t − C(Kt, Xt, At))/Kt)− δ)KtVK

+ (bC(Kt, Xt, At)− aXt)VX − ρAAtVA + 1
2
σ2
AVAA, (12)

which provides a necessary condition for optimality. Given the dynamics for the state

variables in (3), (5), and (7), a solution to the stochastic optimal control problem in (9)

3A formal introduction and derivation of the dynamic programming equation in continuous-time
can be found in Chang (2009). In the Online Appendix, we provide a step-by-step formulation of the
stochastic optimal control problem and the HJB equation in a multidimensional framework.
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is given by the unknown value function, V (Kt, Xt, At), and the consumption function,

C(Kt, Xt, At), that solve the functional problem formed by (11) and (12).

A solution to (9) can be alternatively characterized by the tuple
{
VK , VX , VA, C

}
:={

VK (Kt, Xt, At) , VX (Kt, Xt, At) , VA (Kt, Xt, At) , C (Kt, Xt, At)
}

that solves the system

of second-order quasilinear partial differential equations (PDEs)

0 = (ρ− Φ((exp(At)K
α
t − Ct)/Kt)− Φ′((exp(At)K

α
t − Ct)/Kt)((α− 1) exp(At)K

α−1
t

+Ct/Kt) + δ)VK − (Φ((exp(At)K
α
t − Ct)/Kt)− δ)KtVKK

−(bCt − aXt)VXK + ρAAtVAK − 1
2
σ2
AVAAK , (13)

0 = (ρ+ a)VX + (Ct −Xt)
−γ − (Φ((exp(At)K

α
t − Ct)/Kt)− δ)KtVKX

−(bCt − aXt)VXX + ρAAtVAX − 1
2
σ2
AVAAX , (14)

0 = (ρA + ρ)VA − Φ′((exp(At)K
α
t − Ct)/Kt) exp(At)K

α
t VK

−(Φ((exp(At)K
α
t − Ct)/Kt)− δ)KtVKA − (bCt − aXt)VXA

+ρAAtVAA − 1
2
σ2
AVAAA, (15)

0 = (Ct −Xt)
−γ + bVX − Φ′((exp(At)K

α
t − Ct)/Kt)VK . (16)

for any admissible values of the state variables (Kt, Xt, At). Equations (13)-(15), which

are obtained by differentiating (12) with respect to the state variables and by the applica-

tion of the envelope theorem, characterize the optimal behavior of the costate variables,

VK , VX , and VA in the state space. Together with (16), they define a set of necessary

conditions for optimality. A detailed derivation of (13)-(16) can be found in Appendix A.

Deterministic steady state. In the absence of uncertainty (i.e., σA = 0), the economy

converges over time to a fixed point or deterministic steady state (DSS) in which all

variables are idle. Given the assumptions on the capital adjustment cost function (6),

the DSS is given by A = 0, K = [α/(ρ + δ)]
1

1−α , C = K
α − δK, X = (b/a)C, VX =

−[1/(ρ + a)]
(
C −X

)−γ
, VK = [1− b/(ρ+ a)]

(
C −X

)−γ
, and VA = K

α
VK/(ρA + ρ),

where VK , VX and VA are the DSS values of the costate variables for the capital stock,

habit formation, and productivity, respectively. For a detailed derivation of the model’s

DSS see Appendix A.

3 Approximate solution

Most dynamic economic models do not admit an analytical solution, so it usually has to

be approximated using numerical methods. Perturbation methods are fast and reliable,

and provide an approximate solution to the stochastic optimal control problem in (9)

based on the implicit function theorem and Taylor’s theorem. The perturbed solution

consists of a polynomial that approximates the true solution of the problem locally in a
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neighborhood of an a priori known solution. In what follows, we build the perturbation

solution to the equilibrium system of PDEs in (13)-(16) around the DSS.

Let η > 0 denote a perturbation parameter that rescales the amount of risk in the econ-

omy. For continuous-time stochastic optimal control problems, Fleming (1971) showed

that by choosing η to control the variance of the exogenous disturbances, it is possible

to use regular perturbation theory to obtain asymptotically valid approximations to the

unknown policy functions (see Judd, 1996; Gaspar and Judd, 1997).4 For the model in

Section 2 this amounts to write the exogenous stochastic processes that defines TFP (7) as

dAt = −ρAAtdt+
√
ησ2

AdBA,t = −ρAAtdt+
√
ησAdBA,t,

where η = 0 makes the model deterministic and η = 1 recovers the true stochastic process

in (7).

Following Judd (1998), the perturbation method can be summarized as follows:

1. Express the problem of interest as a continuum of problems parameterized by the

added perturbation parameter η, with the η = 0 case known.

2. Differentiate the continuum of problems with respect to the state variables and the

perturbation parameter η.

3. Solve the resulting equation for the implicitly defined derivatives at the known

solution of the state variables and η = 0.

4. Compute the desired order of approximation by means of Taylor’s theorem. Set

η = 1 to recover the approximation to the original model.

In what follows, we present a framework that generalizes the perturbation method in

Gaspar and Judd (1997) and Parra-Alvarez (2018) for a class of dynamic, continuous-time,

rational expectations models.5 Following Gomme and Klein (2011), Binning (2013a,b)

and Lan and Meyer-Gohde (2013, 2014), we avoid the use of tensor notation and instead

derive our perturbation solution using standard methods from linear algebra based on

the rules for multidimensional calculus in Vetter (1973).6 We then provide an illustrative

example of the method by using a simplified version of our prototype model. Subse-

quently, we explain why the property of certainty equivalence, that usually results from

4This is in contrast to discrete-time stochastic problems, where the perturbation parameter rescales
the standard deviation of the shocks (see Schmitt-Grohe and Uribe, 2004; Fernández-Villaverde et al.,
2016). Choosing instead the variance of the shocks as the perturbation parameter produces approxima-
tions with undesirable stochastic properties in discrete time as shown in Jin and Judd (2002).

5A brief description of the perturbation method in discrete time is provided in the Online Appendix.
6The Online Appendix provides a summary with definitions of all the matrix structures, as well as

the rules for differentiation used throughout the paper.
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any first-order perturbation approximation to discrete-time models, breaks in continuous-

time models. Finally, we introduce the notion of the risky steady state (RSS), which will

become relevant for understanding the transition paths of the model’s variables.

3.1 Solving the model: A general framework

3.1.1 Problem statement

We consider continuous-time dynamic stochastic models where the rational expectations

equilibrium can be summarized by the n-dimensional vector-valued functional

H̃ (x,u,y,yx,yxx) = 0, (17)

where x ∈ X is an nx× 1 vector of state variables from the state space X ⊆ Rnx , u ∈ U is

an nu× 1 vector of control variables from the control region U ⊆ Rnu , y ∈ Y ⊆ Rny is an

ny × 1 a vector of non-control and non-state variables (e.g., the optimal value function

and/or costate variables). In the following, let n = ny+nu. Moreover, yx := Dx>{y} is an

ny × nx matrix of first-order partial derivatives, and yxx := D(x>)2{y} is the correspond-

ing ny×n2
x matrix of second-order partial derivatives. In general, we let yxk := D(x>)k{y}

denote the ny × nkx matrix containing the k-th order derivative of y with respect to the

transpose of the state vector, x>.

The state vector can be partitioned as x =
[
x>1 ; x>2

]>
, where x1 is an (nx − nw) × 1

vector of endogenous state variables, and x2 is an nw × 1 vector of exogenous state

variables. Let ñx = nx−nw. The state variables x1 and x2 are assumed to evolve over time

according to the following system of controlled stochastic differential equations (SDEs)

dx1 = b1 (x,u; η) dt+
√
ησ1 (x,u) dw1, x1(0) = x10 given,

dx2 = b2 (x2; η) dt+
√
ησ2 (x2) dw2, x2(0) = x20 given,

where b1 (x,u; η) and b2 (x2; η) are, respectively, the ñx× 1 and nw2 × 1 real-valued drift

vector functions; σ1 (x,u) is the ñx × nw1 real-valued diffusion matrix for the endoge-

nous states, which can potentially depend on the state and/or the control variables (see,

e.g., Merton, 1971, Steger, 2005, Wälde, 2011, Brunnermeier and Sannikov, 2014, and

Christensen et al., 2016); σ2 (x2) is the nw2 × nw2 real-valued diffusion matrix for the

exogenous states; and w =
[
w>1 ; w>2

]>
is an nw× 1 vector of mutually independent stan-

dard Brownian motions that represent zero-mean exogenous innovations with w1 and w2

denoting nw1 × 1 and nw2 × 1 vectors so that nw = nw1 + nw2 . The joint dynamics of the

state vector x can be compactly written as

dx = b (x,u; η) dt+
√
ησ (x,u) dw, x(0) = x0 given, (18)
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where b = [b>1 ; b>2 ]> is the nx × 1 real-valued drift vector, and σ =
[
σ>1 ;σ>2

]>
is the

nx × nw real-valued diffusion matrix determining the nx × nx variance-covariance matrix

Σ (x,u) = σ (x,u)σ (x,u)> of the state variables.

Remark 1. We allow the drift of the state vector in (18) to depend on the perturbation

parameter, η ≥ 0. This accommodates situations in which functionals of the state vec-

tor induce risk corrected drifts. For example, if the dynamics of a state variable follows

an Ornstein-Uhlenbeck process in logs, d log x = −ρ log xdt +
√
ησdw, then Itô’s lemma

implies that the level of x is given by dx = −
(
ρ log x− 1

2
ησ2
)
xtdt+

√
ησxdw, where the

drift includes a risk correction term and thus depends on the perturbation parameter.�

The vector of optimal control variables is, in general, defined implicitly by the al-

gebraic first-order conditions to the stochastic optimal control problem, and it can be

expressed in terms of the state and non-state variables, i.e., u = U (x,y,yx), with

U : X × Y × Y → U. Similar to Anderson et al. (1996) and Gaspar and Judd (1997),

we simplify our approach by making use of these optimality conditions to substitute the

control variables from the problem, so that (17) is reduced to an ny-dimensional vector-

valued system of equilibrium conditions in x and y only, i.e.,

H̃ (x,U (x,y,yx) ,y,yx,yxx) = H (x,y,yx,yxx) = 0. (19)

By the same token, the drift vector and diffusion matrices that characterize the dy-

namics of the state vector can be written as b (x,U (x,y,yx) ; η) := b (x,y,yx; η) and

σ (x,U (x,y,yx)) := σ (x,y,yx), respectively.

3.1.2 Model class

For a wide class of dynamic macroeconomic models, the rational expectation equilibrium

in (19) can be represented by an ny × 1 system of second-order quasilinear PDEs of the

form

H (x,y,yx,yxx; η) := a (x,y, ηyx) + yxb (x,y, ηyx; η) + ηyxxc (x,y, ηyx) = 0, (20)

where a ∈ Rny , b ∈ Rnx , and c ∈ Rn2
x are continuous functions of the state and the non-

state variables, with x evolving over time according to (18). Their dependence on ηyx

accommodates any potential effect of the variance-covariance matrix of the shocks, Σ.

Hereafter, let the vector-valued function y contain only costate variables, so that ny =

nx. Then, the system in (20) stacks all the PDEs that characterize the optimal behavior

of the costate variables associated with a discounted stochastic optimal control problem,

with discount rate ρ ≥ 0. These equations correspond to the first-order derivatives of the

maximized Hamilton-Jacobi-Bellman equation with respect to the state variables, and
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provide a set of necessary conditions for optimality. Moreover, as shown in the Online

Appendix, a (x,y, ηyx) and c (x,y, ηyx) can be decomposed as

a (x,y, ηyx) = ã (x, ηyx) + b>x (x,y, ηyx; η) y − ρy, (21)

c (x,y, ηyx) = 1
2
vec Σ (x,y, ηyx) , (22)

where ã is an nx × 1 vector, and bx := Dx>{b} is an nx × nx matrix.

Remark 2. For Σ independent of the state and control variables, and hence constant,

the functions a, b and c in (20) do not depend on ηyx. All the effects from risk are

captured through the resulting constant c which is determined by the constant variance-

covariance matrix Σ. This is the case for the prototype RBC economy in Section 2, where

(20) simplifies to

H (x,y,yx,yxx; η) := a (x,y) + yxb (x,y) + ηyxxc = 0,

with y = [VK , VX , VA]> and x = [Kt, Xt, At]
>. The explicit definitions of the matrices

a (x,y), b (x,y), and c are shown in Appendix A. �

A solution to the class of models defined in (20) is given by the set of policy functions

y = g (x; η) , (23)

with g : Rnx+1 → Rnx such that

F (x; η) := a (x,g (x; η) , ηgx (x; η)) + gx (x; η) b (x,g (x; η) , ηgx (x; η) ; η)

+ ηgxx (x; η) c (x,g (x; η) , ηgx (x; η)) = 0, (24)

where F : Rnx+1 → Rnx is a new functional operator in the state space that results from

the substitution of (23) into (20), i.e., F (x; η) := H (x,g (x; η) ,gx (x; η) ,gxx (x; η) ; η),

with gx = Dx>{g} and gxx = D(x>)2{g}.
Once (23) is obtained, it is straightforward to compute the optimal controls as u =

U (x,g (x; η) , ηgx (x; η)), and the optimally controlled states as the solution to the system

of SDEs in (18), x1 = x1,0 +
´ t
0

b1 (x,u) ds+
√
η
´ t
0
σ1 (x,u) dw1.

3.1.3 Perturbation solution

In general, the solution (23) is not available in closed form. Therefore, we approximate

g (x; η) by means of a Taylor series expansion around the DSS of the model, which is de-

fined by the fixed point (x,y; η) = (x,y; 0) that solves (19) in the absence of uncertainty.
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More specifically, (x,y) is obtained as the solution to the extended system of equations[
H (x,y,0,0; 0)

dx/dt

]
:=

[
a (x,y,0)

b (x,y,0; 0)

]
=

[
0

0

]
, (25)

where the second equation imposes the idle, or no growth, condition on the vector of the

state variables in the deterministic case.

Hence, a k-th order approximation to (23) around the DSS is given by (see Lan and

Meyer-Gohde, 2014)

g (x; η) =
k∑
j=0

1

j!

[
k−j∑
i=0

1

i!
D(x>)jηi{g (x; 0)}ηi

]
(x− x)⊗[j] , (26)

where D(x>)jηi is the derivative of the policy function taken j times with respect to the

state vector and i times with respect to the perturbation parameter, evaluated at the DSS.

First-Order Perturbation. For k = 1, we define the First-Order approximation of

g (x; η) around (x; η) = (x; 0) as

g (x; η) = g (x; 0) + gx (x; 0) (x− x) + gη (x; 0) η. (27)

By the definition of the DSS, it follows that y = g (x; 0). To compute the remaining

nx × nx coefficients in gx := gx (x; 0) and the nx × 1 coefficients in gη := gη (x; 0) that

define (27), we successively differentiate (24) with respect to x and η.

Proposition 1. The matrix of coefficients gx in (27) satisfies the nx×nx continuous-time

algebraic Ricatti equation (CARE)

A>gx + gxA + gxCgx + B = 0, (28)

where A, B, C ∈ Rnx×nx. For discounted stochastic optimal control problems, with dis-

count rate ρ > 0, the coefficient matrices are given by A =
(
bx − ρ

2
Inx
)
, C = by, and

B = ãx + bxx (Inx ⊗ y), with Inx an identity matrix of size nx. In addition, C = C> and

B = B>. A bar on top of a variable indicates its corresponding value at the DSS.

Proof. See Appendix B. �

To solve the matrix quadratic equation (28), we introduce the 2nx× 2nx Hamiltonian

matrix

H∞ =

[
A C

−B −A>

]
. (29)

Following Anderson et al. (1996), Zhou et al. (1996), and Hansen and Sargent (2014),

the solution gx to (28) is obtained by locating the stable invariant subspace of (29) by
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means of an ordered Jordan decomposition, i.e.,

H∞ = P

[
Λ1 0

0 Λ2

]
P−1, (30)

where Λ1 is a diagonal matrix containing all the stable eigenvalues of H∞, i.e., all the

eigenvalues with negative real parts, Λ2 is a diagonal matrix containing all the unstable

eigenvalues, i.e., all the eigenvalues with positive real parts, and

P =

[
P11 P12

P21 P22

]
,

is the matrix of corresponding eigenvectors partitioned into blocks of equal size. If the

number of stable eigenvalues equals the number of state variables, #Λ1 = nx, the solution

is said to be stable (see Buiter, 1984 and Judd, 1996) and is given by

gx (x; 0) = −P−122 P21, (31)

which together with the initial condition x(0) = x0 ensures that the vectors of state and

costate variables converge asymptotically to a stationary point, and at the same time the

costate variables satisfy appropriate transversality conditions.

To recover gη, we differentiate (24) with respect to η to obtain the system of nx linear

equations that leads to the following result.

Theorem 1. The risk correction term gη in (27) is determined by a linear system of nx

inhomogeneous equations with solution

gη (x; 0) = −
(
ay + gxby

)−1 (
Ω

a

η + gx

(
Ω

b

η + bη

)
+ gxxc

)
, (32)

where Ω
a

η :=
(

(vec Inx)
> (Inx ⊗ gx)⊗ Inx

)
a(vec ηyx)> is the DSS value of the nx × 1 ma-

trix Ωa
η = Dη{a (·, ·, ηyx)}, and Ω

b

η :=
(

(vec Inx)
> (Inx ⊗ gx)⊗ Inx

)
b(vec ηyx)> is the DSS

value of the nx × 1 matrix Ωb
η = Dη{b (·, ·, ηyx)}.

Proof. See Appendix B. �

Theorem 1 shows that the First-Order approximation to the policy functions for

continuous-time models belonging to the class given in (20) includes a non-zero constant

correction term gη (x; 0) 6= 0, as long as the model is not deterministic, i.e., c (x,y) 6= 0.

Thus, the expected values of the endogenous variables are not equal to their DSS values.

Notice that this contrasts with the results in Schmitt-Grohe and Uribe (2004, Theorem

1), where gη (x; 0) = 0 for first-order approximations around the DSS in discrete time.

The constant gη captures the effects of risk and hence gη 6= 0 makes the approximation

risk-sensitive and breaks CE, while for gη = 0 CE prevails (see Judd, 1996). Below, we
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will refer to the approximation in (27) with gη(x; 0) set equal to zero as a First-Order

Certainty Equivalent (CE) approximation.

Notice that the computation of the risk-correction term demands information on the

slope, gx(x; 0), and the curvature, gxx(x; 0), of the optimal policy functions at the DSS

(cf. Judd and Guu, 1993 and Judd, 1998). Despite the need for this additional informa-

tion, the approximated policy function (27) remains, however, linear in the state variables.

Whilst the information on the slope is already available from (31), the nx×n2
x coefficients

in gxx := gxx (x; 0) are obtained by differentiating (24) with respect to x twice which

yields the following results.

Proposition 2. The matrix of coefficients gxx in (32) satisfies the nx × n2
x Sylvester

equation

R gxx + gxx Q + S = 0, (33)

where R, Q, and S are, respectively, nx × nx, n2
x × n2

x, and nx × n2
x matrices given by

R = ay + gxby,

Q = Inx ⊗
(
bx + bygx

)
+
(
Inx ⊗

(
bx + bygx

))
Knx,nx ,

S = axx + axy (gx ⊗ Inx) +
(
ayx + ayy

(
gx ⊗ Iny

))
(Inx ⊗ gx)

+gx

(
bxx + bxy (gx ⊗ Inx) +

(
byx + byy

(
gx ⊗ Iny

))
(Inx ⊗ gx)

)
,

with Knx,nx denoting an n2
x×n2

x commutation matrix (see Magnus and Neudecker, 2019).

Proof. See Appendix B. �

A unique solution gxx to (33) is given by

vec (gxx (x; 0)) = −
[
In2

x
⊗R + Q> ⊗ Inx

]−1
vec (S) , (34)

as long as the inverse exists, and the matrices R and −Q do not share any eigenvalues

(see e.g., Anderson et al., 1996).

Having built the approximation in (27), it is straightforward to compute an ap-

proximation to the optimal controls using the first-order conditions from the underlying

stochastic optimal control problem. In some applications, these optimality conditions pro-

vide an explicit solution for the controls in which case u (x; η) = U (x,g (x; η) , ηgx (x; η)).

If, on the contrary, the optimal controls are only defined implicitly we use the implicit

function theorem and define a first-order approximation to the optimal control u (x; η)

around the DSS as

u (x; η) = u + ux (x; 0) (x− x) + uη (x; 0) η, (35)

where u := U (x,g (x; 0) ,0), ux (x; 0) := Ux (x,g (x; 0) ,0) + Uy (x,g (x; 0) ,0) gx (x; 0),
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and uη (x; 0) := Uy (x,g (x; 0) ,0) gη (x; 0) + Uηyx (x,g (x; 0) ,0) gx (x; 0).

Second- and higher-order Perturbations. By further differentiating (24) with respect

to the state variables and the perturbation parameter, it is possible to construct higher-

order approximations to the unknown policy functions using (26). For example, we define

a Second-Order approximation to the unknown policy function around the DSS as

g(x; η) = g(x; 0) + gx(x; 0)(x− x) + gη(x; 0)η

+ 1
2
gxx(x; 0)(x− x)⊗ (x− x) + gxη(x; 0)(x− x)η + 1

2
gηη(x; 0)η2. (36)

Similar to the First-Order approximation, the computation of the risk-correction terms

gxη(x; 0) and gηη(x; 0) in (36) requires information on the derivatives of g (x, η) with

respect to x at the DSS beyond that already provided by gx(x; 0) and gxx(x; 0). As

shown in Gaspar and Judd (1997), as a general rule, knowledge of the first (k+2) deriva-

tives of g(x; η) with respect to x only provides information on the first k derivatives of

gη(x; η) with respect to x. From a computational perspective, this implies that the cost

of building a k-th order perturbation for continuous-time stochastic models, in terms of

the number of matrix operations required, is of order O(nk+2
x ).7 According to this rule, to

obtain gxη(x; 0) and gηη(x; 0) we need to compute gxxx(x; 0), gxxxx(x; 0) and gxxη(x; 0).

An attractive feature of the perturbation approach is that all these unknown coefficients

are obtained as the solution to sequential linear system of equations with constants that

depend on lower-order derivatives of the policy function at the DSS.

Remark 3. The choice of not including the value function V (x; η) in the vector y is

because of our interest in computing a risk-corrected first-order, and thus linear, approx-

imation to the control variables (35). Since the latter are usually determined by the

first-order derivatives of the value function (i.e. the costates), any first-order approxima-

tion to the value function would imply optimal control variables that are constant. As a

by-product of the First-Order approximation to the costate variables (27) it is straight-

forward to define first- and a second-order approximations to the value function V as

V (x; η) = V + g(x; 0) (x− x) + V ηη

+ 1
2
gx(x; 0)(x− x)⊗ (x− x) + gη(x; 0)(x− x)η + 1

2
V ηηη

2, (37)

where V , V η, and V ηη are computed from the DSS value of the maximized HJB equation

and the application of the envelope theorem. �
7This contrasts with the computational cost of a k-th order approximation to discrete-time models

which is of order O(nkx).
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3.2 An illustration: The stochastic growth model

To illustrate how the procedure works, consider the stochastic growth model which results

from setting X0 = b = 0 and letting ξ → ∞ in the prototype model of Section 2. A

detailed derivation of all the results can be found in the accompanying Online Appendix.

Competitive equilibrium. For any given admissible values of the state variables (Kt, At),

optimal consumption in this economy is entirely determined by the costate variable for

capital, Ct = V
−1/γ
K , which in equilibrium satisfies the second-order quasilinear PDE

(exp(At)K
α
t − V

−1/γ
K − δKt)VKK + (α exp(At)K

α−1
t − δ)VK

− ρAAtVAK + 1
2
ησ2

AVAAK − ρVK = 0, (38)

with solution

VK = VK(Kt, At; η). (39)

Let y = VK and x = [Kt, At]
>. Then, the equilibrium condition (38) belongs to the class

of models in (20) with

a (x,y) =
(
α exp(At)K

α−1
t − δ − ρ

)
VK ,

b (x,y) =

[
exp(At)K

α
t − V

−1/γ
K − δKt

−ρAAt

]
,

c (x,y) =
[
0, 0, 0, 1

2
σ2
A

]>
.

(40)

Substitution of (39) into (40) yields the functional equation F (x; η) = 0.

Deterministic steady state. For η = 0, the model’s DSS is given by the fixed point

(x,y) =
(
K,A, VK

)
that solves the system of equations

[
a (x,y)

b (x,y)

]
=


(
α exp(A)K

α−1 − δ − ρ
)
VK

exp(A)K
α − VK

−1/γ − δK
−ρAA

 =

 0

0

0

 . (41)

In particular, the DSS is given by A = 0, K = [α/(ρ+ δ)]
1

1−α , and VK =
(
K
α − δK

)−γ
.

Approximate solution. The First-Order approximation to the costate variable for

capital around the DSS is defined as

VK (K,A; η) = VK + VKK
(
K −K

)
+ VKA

(
A− A

)
+ VKηη, (42)

where VK is obtained from (41), while the remaining constants, VKK := ∂VK
(
K,A; 0

)
/∂K

and VKA := ∂VK
(
K,A; 0

)
/∂A are the solution to the quadratic system of equations
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formed by

Fx (x, 0) =

[
FK(K,A; 0)

FA(K,A; 0)

]
=

[
0

0

]
.

In particular, these constants are given by

VKK =
−ρ±

√
ρ2 − 4 1

γ
α(α− 1)K

α−2
VK
−1/γ

2 1
γ
VK
−1/γ−1 , (43)

VKA = −
(

1

γ
VK
−1/γ−1

VKK − ρA
)−1 (

K
α
VKK + (δ + ρ)VK

)
. (44)

To ensure that the problem’s value function is strictly concave along the capital stock

lattice, we choose the root in (43) that ensures VKK < 0 (see Parra-Alvarez, 2018).

The remaining constant, VKη := ∂VK
(
K,A; 0

)
/∂η, corresponds to the solution to the

inhomogeneous linear equation

Fη (x, 0) = Fη(K,A; 0) = 0,

which is given by

VKη = −1
2
σ2
A

VAAK
1
γ
VK
−1/γ−1

VKK
. (45)

Having obtained (42), it is now possible to compute a linear approximation to the op-

timal consumption function by linearizing the first-order condition, C = V
−1/γ
K , around

the DSS

C(K,A, η) = C + CK
(
K −K

)
+ CA

(
A− A

)
+ Cηη, (46)

where C = VK
−1/γ

, with CK := ∂C
(
K,A; 0

)
/∂K, CA := ∂C

(
K,A; 0

)
/∂A, and Cη :=

∂C
(
K,A; 0

)
/∂η given by

CK = −1

γ
VK
−1/γ−1

VKK =
ρ

2
∓
√(ρ

2

)2
− 1

γ
α(α− 1)K

α−2
C, (47)

CA = −1

γ
VK
−1/γ−1

VKA =
1(

CK + ρA
) (Kα

CK −
(δ + ρ)C

γ

)
, (48)

Cη = −1

γ
VK
−1/γ−1

VKη = −(CK)−1 1
2

[
(1 + γ)C

(
CA

C

)2

− CAA

]
σ2
A. (49)

Expression (49) shows that Cη 6= 0, suggesting that a first-order perturbation approx-

imation to the optimal consumption function includes an adjustment for risk. Given the

concavity of the consumption function, the constant Cη is negative. This implies that

risk averse agents will consume less in the presence of risk due to precautionary savings.

The risk-correction term requires information on both the slope and the curvature of the
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optimal consumption function at the DSS. While CK and CA are given by (47) and (48),

CAA is still unknown but can be obtained by first computing VAAK in (45) as the solution

to the linear system of equations formed by

Fxx (x, 0) =
[
FKK(K,A; 0), FKA(K,A; 0), FAA(K,A; 0)

]>
= 0.

Notice that certainty equivalence will still hold, i.e., Cη = 0, under the following as-

sumptions on the stochastic growth model: (i) zero risk, σA = 0; (ii) quadratic utility,

(1 + γ) = 0 and CAA = 0 (see Judd, 1996).

3.3 An intuition: Why does certainty equivalence break?

The solution to stochastic economic models is said to be certainty equivalent if the re-

sulting policy functions are invariant to higher-order moments of the model’s underlying

exogenous shocks. In other words, the solution of an economic model under uncertainty

is identical to the solution of the same model under certainty.

For discrete-time stochastic models, certainty equivalence holds for any first-order

(linear) approximation around the DSS. In general, the optimality conditions that char-

acterize equilibria in these models can be summarized by a system of stochastic difference

equations, where expectations regarding the future value of the control variables need to

be formed. Given that the policy functions are a priori unknown, the computation of such

expectations can only be done ex-post once the optimal controls have been approximated.

Hence, for a first-order perturbation this is equivalent to calculating the expected value

of a set of linear functions which, according to the linearity property of the expectation

operator, implies that only first-order moments will enter the approximated solution.

However, as exemplified by equation (49), this is not the case for continuous-time

stochastic models. To illustrate this point let us consider the equilibrium dynamics of

consumption in the stochastic growth model. The Euler equation for consumption in this

case is given by (see Online Appendix)

dCt =

[
α exp(At)K

α−1
t − δ − ρ
γ

+ 1
2
(1 + γ)

(
CA
Ct

)2

ησ2
A

]
Ctdt+ CA

√
ησ2

AdBA,t. (50)

Notice that (50) includes some features that account for the model’s underlying risk.

In particular, consider the quadratic term 1
2
(1 + γ)C (CA/C)2 ησ2

A, which also appears in

(49). The first thing to note is that it contains the marginal response of optimal consump-

tion to changes in the exogenous driving force of the model, CA, which is closely related

to risk aversion. To see this recall that in equilibrium the optimal consumption function,

C, is related to the marginal utility of consumption, u′ (C), and thus CA is related to the

first-order derivative of the marginal utility, u′′ (C). This contrasts to the Euler equation
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Risk effects on: ∂nu/(∂c)n related to:
Cont. Time Discrete Time

1st 2nd 1st 2nd 3rd
— n = 2 risk aversion: −u′′/u′ X X X X X
level of C n = 3 prudence: −u′′′/u′′ X X X X
slope of C n = 4 temperance: u(4) < 0 X X

Table 1. Effects of risk in perturbation solutions. The table indicates the order of the
derivative of the utility function ∂nu/(∂c)n necessary to account for a particular effect of risk
on optimal consumption, as well as the order of approximation needed to capture it both in
continuous-time and discrete-time stochastic models.

for consumption in discrete time which only includes terms related to u′(C) due to the

presence of expected values that cannot be computed a priori. Also note that (50) con-

tains the perturbation and the variance parameters which jointly capture the amount of

risk in the model, ησ2
A. Finally, note that the term (1 + γ) is the coefficient of relative

prudence for the case of CRRA utility functions.

How this relates to certainty equivalence becomes clear when taking a closer look at

the precautionary motive, or prudence, that describes the optimal reaction of consump-

tion to risk. Prudence is related to the third derivative of the utility function, u′′′ (C),

and its absence leads to certainty equivalence.8 Hence, a policy function that only con-

tains u′′ (C) will account for risk aversion, i.e., how much an agent dislikes risk, but not

for prudence and, thus, will be certainty equivalent. If, in addition, the policy function

involves the fourth derivative of the utility function, u(4) (C) < 0, then it will also account

for temperance, i.e., how the marginal propensity to consume responds to risk. Thus,

while the effects of risk on the level of consumption are captured by u′′′ (C), the effects

on the slope are captured by u(4) (C) (see Kimball, 1990a and Zeldes, 1989).

In terms of the approximation method, note that a first-order (linear) perturbation to

the unknown consumption function requires computing the first derivative of the Euler

equation. Since its discrete-time version only contains u′ (C), a first-order approximation

will just include terms up to the second derivative of the utility function and hence, it will

account for risk aversion but not for prudence. Therefore, a first-order approximation in

discrete time will be certainty equivalent. In contrast, the continuous-time Euler equation

(50) already includes terms related to u′ (C) and u′′ (C), so its first-order approximation

will account for both risk aversion and prudence. The resulting policy functions in con-

tinuous time will not only depend on the mean of the exogenous shock but also on its

variance – breaking certainty equivalence. To break certainty equivalence in discrete time,

a second-order approximation is needed, which in continuous time already leads to correc-

tion terms in the slopes. Nevertheless, notice that the ability of a first-order approxima-

tion to break the certainty-equivalence property in continuous-time models comes with

8Absolute prudence is defined as −u′′′ (C) /u′′ (C), while relative prudence is defined as
−u′′′ (C)C/u′′ (C) (see Kimball, 1990b).
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larger computational costs than those implied by a first-order approximation to discrete-

time models (see footnote 7). Table 1 summarizes the discussion above by indicating

which order of approximation is required in order to account for a given risk effect.

3.4 Risky steady state

Similar to the concept of the DSS, we may define the risky or stochastic steady state (RSS)

as the fixed point to which the economic system converges in the presence of uncertainty,

but in the absence of shocks. Knowledge of the RSS facilitates the understanding of the

transitional dynamics implied by the perturbation-based approximations. Furthermore,

the RSS is relevant to the extent that it incorporates information regarding the future

risk prospects of risk-averse economic agents (see Coeurdacier et al., 2011).

Unfortunately, the computation of the RSS is not straightforward. Following its def-

inition, we require information about how risk, as measured by the variance of economic

shocks, affects the policy functions, g (x; η), which, ex-ante, are also unknown. However,

it is still possible to approximate its value by using the perturbation-based approximation

of the policy functions around the DSS.

In particular, we define the RSS of the state variables, x̂, by the solution to the system

of equations formed by

b (x̂,g (x̂; 1) ,gx (x̂; 1) ; 1) = 0, (51)

where b (·) is the drift in (18) that results from (i) replacing y = g (x; η) and yx =

gx (x; η), with the corresponding k-th order perturbation-based approximation (26) eval-

uated at x̂; (ii) setting any future realization of economic shocks to zero, i.e. dw = 0; and

(iii) imposing the stationarity condition dx̂/dt = 0. Thus, we refer to x̂ as the k-th order

approximation to the RSS value of the state vector. Once x̂ is computed, we obtain the

corresponding k-th order approximation to the RSS of the costate and control variables

as ŷ = g (x̂; η = 1), and û = U (x̂, ŷ, ŷx), respectively.

An attractive feature of the perturbation method of Section 3.1 is that since it is

possible to account for risk using a first-order approximation, we can use (51) to build an

approximation to the RSS already within a linear framework, i.e., for k = 1.9 In this case,

the first-order approximation to the RSS is given by the tuple (x̂, ŷ, û; η = 1) that solves

0 = b (x̂,g(x; 0) + gx(x̄; 0)(x̂− x) + gη(x; 0),gx(x; 0); 1) , (52)

ŷ = g(x; 0) + gx(x; 0)(x̂− x) + gη(x; 0), (53)

û = u + ux (x; 0) (x̂− x) + uη (x; 0) . (54)

A similar procedure can be used to build a k-th order approximation of the RSS, for k > 1.

9de Groot (2013) uses a similar approach for discrete-time models for the case of perturbations of
order k = 2 and higher (see Online Appendix).
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As an example, let us consider the stochastic growth model in Section 3.2. Using the

approximated policy function (42), we can compute the RSS value for the state variables,

(K̂, Â), as the solution to exp(Â)K̂α −
(
VK + VKK

(
K̂ −K

)
+ VKA

(
Â− A

)
+ VKη

)−1/γ
− δK̂

−ρAÂ

 =

[
0

0

]
.

It follows that Â = A = 0, while the first-order approximation to the RSS of the capital

stock, K̂, is given as the solution to the nonlinear equation

K̂α −
(
VK + VKK

(
K̂ −K

)
+ VKη

)−1/γ
− δK̂ = 0.

Next, substitute (K̂, Â) in (42) and (46) to obtain an approximation to the RSS values

for V̂K and Ĉ, respectively.10

4 Economic implications

This section investigates the economic implications of the approximated solutions in (26)

by measuring the pricing errors when using the First-Order CE approximation, the First-

Order approximation, and the Second-Order approximation defined in Section 3.1. The

pricing errors are compared relative to the solution obtained from a global nonlinear col-

location method based on a Chebyshev polynomial approximation of the unknown value

function. Though this approach delivers highly accurate solutions, it is costly in terms

of computational efficiency (see Parra-Alvarez, 2018; Posch, 2020). By comparing the

economic pricing errors, we can study how the risk adjustment matters quantitatively.

4.1 Stochastic discount factor

We define the stochastic discount factor (SDF) as the process ms/mt , such that, for any

security with price Pt, and a single payoff χs at some future date s ≥ t, we obtain

mtPt = Et [msχs] ⇒ 1 = Et [(ms/mt)Rs] , (55)

where Rs := χs/Pt is the security’s gross return, and mt is the present (discounted) value

of a unit of consumption in period t. Hence, condition (55) can be used to discount

expected payoffs on any asset with a single payoff to find its equilibrium price. From the

expected discounted life-time utility (1), the instantaneous utility function (2), and the

first-order condition (11), we obtain the SDF for s > t following Detemple and Zapatero

10As shown in the Online Appendix, an approximate closed-form solution to the RSS can be obtained
by first linearizing b (x,y; η) around the DSS.
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(1991) as (see Appendix A)

ms/mt = e−ρ(s−t)
(Cs −Xs)

−γ + bVX,s

(Ct −Xt)
−γ + bVX,t

for s > t, (56)

where mt = e−ρt(Ct − Xt)
−γ + bVX,t. Hence, the accuracy of the approximation to the

models’ solution matters for the pricing kernel in (56), where Ct and VX,t are replaced by

the approximate solutions, respectively.

4.2 Pricing errors and their decomposition

In what follows we define pricing errors as (see Lettau and Ludvigson, 2009)

ε := Et[(ms/mt)Rs]− 1 (57)

based on the gross return on any tradable asset with instantaneous return, Rs at s > t,

and where ε = 0 for the model’s true (but unknown) policy functions. This (unit free)

quantity compares to the measure of numerical accuracy based on first-order principles,

often referred to as ‘Euler equation errrors’ (cf. Aruoba et al., 2006). In fact, it compares

to the discrete-time intertemporal condition and is interpreted as the relative error in-

curred by the use of the approximated policy functions, measured in terms of hypothetical

pricing errors of a given asset.11

In the following, we focus on pricing zero-coupon bonds with sure payoff χt+N = 1

at period t + N . From (55), we obtain the price of this zero-coupon bond as Pt =

Et [(mt+N/mt)] such that the gross return of this asset is Rt = 1/Pt, conditional on the

information set at time t. Unfortunately, we do not readily observe the instantaneous

risk-free rate for N → 0 (with corresponding rt := limN→0− lnPt/N). Any equilibrium

return from a zero-coupon bond carries a term premium for a given time-to-maturity N .

To compute the price of a zero-coupon bond for a given time-to-maturity N , we use the

PDE approach (Cochrane, 2005, chap. 19.4). In the absence of arbitrage opportunities,

the fundamental price of a zero-coupon bond Pt with fixed maturity N satisfies

Et
(

dPt
Pt

)
− 1

Pt

∂Pt
∂N

dt︸ ︷︷ ︸
holding period return

= −Et
(

dmt

mt

)
︸ ︷︷ ︸
risk-free return

+

(
− 1

dt
Et
((

dPt
Pt

)(
dmt

mt

)))
︸ ︷︷ ︸

term premium

, (58)

with −Et (dmt/mt) = rtdt, and where the SDF evolves according to

dmt

mt

= µmdt+ σmdBA,t, (59)

11Following Judd and Guu (1993), we provide in the Online Appendix a measure of the numerical
accuracy of the approximated policy functions in terms of residuals to the HJB equation (12).
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defining the drift, µm, and diffusion, σm, terms in (59) as functions of the policy functions

(see Appendix A). Hence, they both depend on the accuracy of the approximate solution

to the economic model.12

Given the decomposition in (58), we are now prepared to shed light on the different

sources of pricing errors. The arbitrage-free price of the zero-coupon bond Pt is defined in

terms of the (true) policy functions from the data generating process (DGP), for which ε =

0. For an approximation to the model’s policy functions we decompose any potential pric-

ing error into three categories. First, the holding period return is inaccurate. Second, the

risk-free rate is poorly approximated. And third, the term premium is poorly captured.

Since in equilibrium all the time dependence of the zero-coupon bond price with given

time-to-maturity N comes through the law of motions of the state variables that drive the

economy, i.e., Pt = P (Kt, Xt, At), an application of Itô’s lemma shows that the dynamics

of the bond’s price is given by (cf. Posch, 2020)

dPt =
∂Pt
∂Kt

dKt +
∂Pt
∂Xt

dXt +
∂Pt
∂At

dAt + 1
2

∂2Pt
∂A2

t

(dAt)
2 . (60)

Inserting (60), together with (3), (5), and (7) into (58) yields the fundamental pricing

equation as

∂Pt
∂N

= µmPt +
∂Pt
∂Kt

(
Φ((exp(At)K

α
t − C(Kt, Xt, At))/Kt)− δ

)
Kt

+
∂Pt
∂Xt

(
bC(Kt, Xt, At)− aXt

)
− ρAAt

∂Pt
∂At

+ 1
2

∂2Pt
∂A2

t

σ2
A +

∂Pt
∂At

σAσm. (61)

Again, we can decompose the pricing error (57) into a direct effect of the approximated

solution C(Kt, Xt, At) on the holding period return, and two indirect effects through the

risk-free rate channel, µm, and through the covariance of the price with the SDF, σm.

The functional form of the solution to the PDE (61) is unknown. In order to study the

effects of approximation errors on the pricing of the zero-coupon bond, we use collocation

methods to approximate the price as a function of the time-to-maturity and the state

variables with the polynomial Pt ≈ φ(N,Kt, Xt, At)ν, in which ν is a vector of unknown

coefficients, and φ(·) denotes the Chebyshev basis matrix with associated Chebyshev

nodes. We extend the PDE in (61) with the boundary condition φ(0, Kt, Xt, At)ν = 1p,

where p denotes the degree of the approximation. This approach provides accurate re-

sults, is simple to implement as it requires only the solution of a linear system, and thus

allows us to avoid tedious simulations for the different approximated solutions.

12Alternatively, one could include the bond prices at different maturities in H and construct a per-
turbation approximation around the DSS. Andreasen and Zabczyk (2015) propose an efficient way to
implement this approach using a perturbation-on-perturbation framework for discrete-time models.
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From (57), we obtain for the zero-coupon bond with time-to-maturity N ,

ε(N) := Et(mt+N/mt)/Pt − 1,

which is zero for the correct pricing kernel Et(mt+N/mt) = Pt implying the arbitrage-free

price Pt, but would be different from zero if replaced by an investor’s subjective pricing

kernel built from an approximated solution to the DGP. Let P a
t be the resulting price, i.e.,

P a
t := Et

[
(mt+N/mt)

∣∣∣C(Kt, Xt, At) = u(x; η), µm = µ̃m, σm = σ̃m

]
based on the subjective solution for the consumption function C(Kt, Xt, At) = u(x; η), for

the drift µ̃m := µm(x,u(x; η),g(x; η)) and for the diffusion σ̃m := σm(x,u(x; η),g(x; η)).

Below, we study the consequences of misspricing generated by the First-Order (CE), the

First-Order, or the Second-Order approximation on both the bond-price dynamics in (60)

and/or the SDF dynamics in (59).

Let ε
(N)
a represent a measure of ex-ante pricing errors on a zero-coupon bond for

given time-to-maturity N , defined as the (absolute) percentage deviation of the bond

price using the subjective pricing kernel relative to the arbitrage-free price

ε(N)
a := P a

t /Pt − 1. (62)

To analyze the different sources of pricing mismatch, we define the ex-post pricing

errors as the (absolute) percentage deviation of the price under the subjective pricing

kernel relative to the no-arbitrage price, when the investor can observe the true SDF

dynamics either partially (drift only) or completely (drift and diffusion), respectively,

ε
(N)
b := Et

[
(mt+N/mt)

∣∣∣C(Kt, Xt, At) = u(x; η), σm = σ̃m

]
/Pt − 1, (63)

ε(N)
c := Et

[
(mt+N/mt)

∣∣∣C(Kt, Xt, At) = u(x; η)
]
/Pt − 1. (64)

Hence, the measures in (63) and (64) are focusing on the pricing error obtained by

providing further information on the SDF dynamics. While ε
(N)
b measures the error when

shutting down the indirect risk-free rate channel in the error decomposition, the second

ε
(N)
c measures the error when shutting down both indirect channels, mainly focusing on

the direct pricing errors. For example in (64), the investor infers the correct SDF from

the data, and solves the corresponding PDE

∂P c
t

∂N
= µmP

c
t +

1

dt
Et
[
dP c

t

∣∣∣C(Kt, Xt, At) = u(x; η)
]

+

(
∂P c

t

∂At

)
P c
t σAσm,

with the approximated price P c
t (in the same way we define P b

t ). This enables us to

study the hypothetical error an investor would face ex-post when trading the asset at the
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Parameter Value Source / Target
Discounting, ρ 0.0410 Jermann (1998)
Risk aversion, γ 2.0000 Aruoba et al. (2006)
Depreciation rate, δ 0.0963 Jermann (1998)
Capital share in output, α 0.3600 Jermann (1998)
Persistence TFP, ρA 0.2052 Aruoba et al. (2006)
Volatility TFP, σA 0.0307 U.S. real GDP growth volatility
Adjustment cost, ξ 0.3261 Short-term return on government

bonds reported in Jermann (1998)
Habit current cons., b 0.8200 Jermann (1998)
Habit past cons., a 1.0000 Jermann (1998)

Table 2. Parameter values. The parameters of the model are calibrated to an annual
frequency and their values should be interpreted accordingly.

subjective (approximated) price instead of true Pt, yet knowing the SDF dynamics.

5 Results

5.1 Calibration

To quantitatively evaluate the extent to which the First-Order approximation can ac-

count for the effects of risk, we proceed to calibrate the prototype model of Section 2

to an annual frequency. Therefore, all the parameter values should be interpreted ac-

cordingly. Many of the parameter values are chosen to replicate the parameterization to

the U.S. economy used in the discrete-time models of Jermann (1998) and Aruoba et al.

(2006). A complete summary of the model’s calibration is provided in Table 2.

In particular, we set the risk aversion parameter and the share of capital income to

γ = 2 and α = 0.36, respectively. The values for the subjective discount rate, the de-

preciation rate and the habit process are set to ρ = 0.041, δ = 0.0963, and a = 1 and

b = 0.82, respectively. These parameter values are consistent with steady-state values for

the capital-output ratio, and the consumption and investment shares in aggregate output

of around 2.5, and 76% and 24%, respectively. We fix the adjustment cost parameter to

ξ = 0.3261 such that the model produces an average real return on short term government

bonds close to that reported in Jermann (1998). Finally, the persistence of the underlying

productivity process is set to ρA = 0.2052 which corresponds to the continuously com-

pounded value of that in Aruoba et al. (2006), while its volatility is set to σA = 0.0307 to

target the relative growth volatilities (relative standard deviations) of consumption and

investment to output, and which is consistent with the observed volatility of real GDP

growth in the U.S. for the period 1954-1989.

Table 3 reports some of the moments implied by different parameterizations of our

RBC model when solved by the First-Order perturbation and a global approximation
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Model version σC/σY σI/σY R
(0.25)
t

Pert. Global Pert. Global Pert. Global

Benchmark 0.45 0.44 2.65 2.69 0.37 (4.99) 0.68 (5.17)
No habits, no adj. costs 0.34 0.34 3.00 3.01 4.09 (0.19) 4.11 (0.19)
Habit, no adj. costs 0.13 0.14 3.72 3.72 3.86 (0.26) 4.10 (0.19)
Adj. costs, no habits 1.12 1.11 0.68 0.66 3.77 (0.60) 3.85 (0.61)

U.S. Data (1954-1989) 0.51 2.65 0.80 (5.67)

Table 3. Moments from simulated data. The different moments are computed using
100,000 draws starting at the deterministic steady state (DSS). The policy functions are com-
puted using both a First-Order perturbation (Pert.) and a global approximation (Global). For
comparison, U.S. data moments correspond to those in Jermann (1998). We report the standard
deviation (sd) of quarterly growth rates for consumption, σC , and investment, σI , relative to

output, σY , after 10 years; and the mean of the distribution of the three-month yield R
(0.25)
t

around the DSS after one quarter with sd in brackets (annualized, percentage terms).

method based on collocations. Along with the prototype model of Section 2 (Bench-

mark), we report the moments for the model without habit formation and no capital

adjustment cost of Section 3.2 (No habits, no adj. costs, i.e. b = X0 = 0 and ξ → ∞),

no capital adjustment cost (Habit, no adj. costs, i.e, ξ →∞), and without habits (Adj.

costs, no habits, i.e., b = X0 = 0). The last row in the table shows the moments re-

ported by Jermann (1998) for the U.S. between 1954 and 1989. The relative standard

deviations for quarterly consumption and investment growth correspond to averages over

100,000 samples generated through an Euler-Maruyama discretization scheme with pre-

cision ∆ = 0.0125, each of them consisting of 10 years of simulated data, initialized at

the DSS. Finally, the table also includes the three-month simulated yield-to-maturity for

a zero-coupon bond and the standard deviation of its simulated distribution.

We confirm that only the model with both, habit formation and capital adjustment

costs, generates the historical consumption and investment volatility relative to output,

and three-month bond yields with sufficient variability. Hence, in this model risk matters

quantitatively and we can use the parameterization in Table 2 to investigate the asset

pricing errors for the different solution methods (at the deterministic steady state).

5.2 Approximated policy functions

Figure 1 shows the First- and Second-order perturbation approximations to the policy

function for consumption around the DSS for our prototype model using the calibration

in Table 2. The left panel shows optimal consumption along the capital stock lattice for

values 15% below and above its DSS, while keeping the remaining state variables fixed at

their deterministic steady state values. The right panel plots optimal consumption along

the habit formation lattice covering values that are 15% above and below its DSS. The

figures also indicate the DSS and RSS values for consumption, capital stock and habit.
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Figure 1. Approximated policy function for consumption: First- and Second-Order
approximations to the policy function for consumption around the deterministic steady state
(DSS) along the capital stock lattice (left panel) and the habit lattice (right panel), while keeping
the remaining state variables at their corresponding DSS values. Values on the horizontal axis
represent deviations from DSS. A circle denotes the DSS, a star denotes the first-order approx-
imation to the risky steady state (RSS), and a square denotes the second-order approximation
to the RSS.

Their values are reported in Table 4, where we have also included a measure of the RSS

computed from a global approximation based on projection methods.

The plot depicts two types of a first-order (linear) approximation to the optimal con-

sumption function. First, it shows the First-Order (CE) by the dotted line, which by

construction, is invariant to the amount of volatility in the model, and hence is certainty

equivalent. Second, the solid line depicts the First-Order approximation that corresponds

to the first-order perturbation solution that breaks certainty equivalence as it includes

the (constant) risk correction term Cη := Cη
(
K,X,A; 0

)
6= 0. Hence, while still being

a linear approximate solution, it is risk sensitive as its intercept depends on the amount

of uncertainty in the model. For comparison, we plot the Second-Order approximation

(dashed line) to illustrate the additional risk correction attainable when using higher

orders of approximation.

Two things are worth mentioning at this point. First, note that the First-Order (CE)

policy function for consumption, which by construction passes through the deterministic

steady state, lays above the other two alternative approximations. The reason is that

the latter account for the effects of risk, and hence imply lower consumption levels along

the entire state space. In particular, the First-Order approximation is parallel to the

First-Order (CE), and for values of the state space in a neighborhood of the DSS, it will

imply levels of consumption that are relatively close to those suggested by the Second-

Order, and hence, nonlinear approximation. Second, the RSS computed from the First-

and Second-Order approximations command higher values for the capital stock, habits,
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Variable DSS RSS Unconditional Mean

First Second Global First Second Global

A 0 0 0 0 0 0 0
X 1.0541 1.0589 1.0593 1.0592 1.0535 1.0537 1.0533
K 4.5077 4.6582 4.6693 4.6655 4.5658 4.5722 4.5662
C 1.2854 1.2914 1.2918 1.2917 1.2849 1.2851 1.2846

Table 4. Steady states values and unconditional means. The table reports steady-state
values of all state variables and consumption in the model. It includes the deterministic steady-
state values (DSS), the first- and second-order approximated risky steady-state (RSS) values,
as well as a global approximation to the RSS. The table also reports the unconditional mean of
the ergodic distribution. The latter is obtained from simulating the model using a first-order,
a second-order and a global approximation to the solution.

and consumption over the long-run, relative to those implied by the deterministic case.

This result can be confirmed by looking at Table 4, where we also report the uncondi-

tional means of the model variables. Notice that due to a precautionary savings motive,

the RSS value and the unconditional mean for the capital stock, K, are larger than the

corresponding DSS value. However, the relation between the RSS and the unconditional

mean of consumption with its DSS value is ambiguous. Increased savings on the one

hand reduce consumption for a given capital stock, while on the other hand they imply

a larger capital stock in the future, which in turn increases consumption, ceteris paribus.

In fact, while the RSS is higher, the unconditional mean of consumption is below its DSS.

A detailed summary of the approximated policy function for consumption is presented

in Table 5, where we report the loadings from the first- and second-order perturbations

associated to each of the state variables. Columns 2 and 4 show the coefficients for the

continuous-time model, while columns 3 and 5 do the same for a discrete-time version

of the model described in the Online Appendix.13 Comparing columns 2 and 3 confirms

that a first-order approximation to continuous-time models breaks certainty equivalence.

Following our previous discussion, the constant risk correction of −0.0020 implied by our

calibration, which is otherwise absent in the solution to the discrete-time model, suggests

that a First-Order (CE) approximation overestimates optimal consumption in the pres-

ence of uncertainty along the entire state space. Note how a similar risk correction of

−0.0025 is obtained in a discrete-time framework when using a second-order, and hence

nonlinear, approximation. Comparing columns 4 and 5 reveals that a second-order per-

turbation in continuous time includes not only an additional adjustment in the constant

term of the approximation, Cηη 6= 0, but also in the slopes of the policy function, im-

plying a time-varying risk correction.14 As suggested in Andreasen (2012), these two

13The first- and second-order approximations to the policy functions that solve the corresponding
discrete-time model are computed using Dynare.

14Based on our results, we conjecture that all the coefficients in (36) are different from zero. Hence, a
second-order approximation provides additional risk correction not only through the additional constant
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First-Order Second-Order
Continuous time Discrete time Continuous time Discrete time

C 1.2854 1.2854 1.2854 1.2854
Cη −0.0020 0 −0.0020 0
CK 0.0315 0.0290 0.0315 0.0290
CX 0.6680 0.7042 0.6680 0.7042
CA 0.5370 0.4899 0.5370 0.4899
Cηη - - −0.0000 −0.0025
CKη - - −0.0003 0
CXη - - 0.0020 0
CAη - - −0.0063 0
CKK - - −0.0049 −0.0046
CXX - - −0.1930 −0.2089
CAA - - −0.3119 −0.3663
CKX - - 0.0402 0.0389
CKA - - −0.0282 −0.0286
CAX - - 0.6508 0.6942

Table 5. Loadings of policy function for consumption. The table reports the coef-
ficients from first- and second-order approximations to the policy function for consumption,
C = C (K,X,A; η), around the deterministic steady state

(
C,K,A

)
for the model in Section 2

and its equivalent discrete-time version.

additional effects can only be achieved in discrete-time models by computing third-order

approximations (see Table 1).

5.3 Impulse response functions

Having approximated the unknown policy function, we now compute the impulse-response

functions (IRF) in order to compare how the different degrees of approximation capture

the amplification and propagation mechanisms of the prototype economy to a temporary

shock on the level of TFP. The results are presented in Figure 2, where we plot the tran-

sitional dynamics of consumption, capital stock, habits, and output over the course of 60

years after a one-time unexpected increase in TFP equal to σA. Prior to the shock, all the

variables are assumed equal to their respective stationary values. Thus, while the First-

Order (CE) solution is initially resting at the DSS, the First- and Second-Order solutions

are resting at their respective (approximate) RSS. Again, the IRF for the CE solution

resembles that from a first-order perturbation to an equivalent discrete-time model. For

comparison purposes, we report the first- and second-order IRFs for the discrete-time

model in the Online Appendix.

Note that the IRFs for the First-Order (CE) lay below the risk-sensitive approxi-

mations in Figure 2. Intuitively, since the constant correction term for the First-Order

term, gηη(x; 0), but also through the time-varying component, gxη(x; 0).
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Figure 2. Impulse-Response function to a TFP shock: Responses for the annual levels
of consumption, capital stock, habit formation and output to a shock in TFP equivalent to one
standard deviation, σA. All the variables are assumed to be in their corresponding steady states
before the shock. A circle denotes the deterministic steady state, a star denotes the first-order
approximation to the risky steady state, and a square denotes the second-order approximation
to the risky steady state.

approximation is negative, Cη < 0, one may expect that the consumption response ap-

proximated by a First-Order will be below the one approximated by First-Order (CE).

However, as shown in Figure 1 and Table 4, the risk-correction in consumption induced

by the former leads to a higher risky steady-state capital stock and, thereby, a higher

risky steady-state level of consumption. Thus, the fact that the First-Order (CE) is be-

low the First-Order and Second-Order responses is explained by the differences in their

fixed points, or long-run levels, and hence cannot be readily interpreted as an indication

that certainty equivalent approximations underestimate the response of macroeconomic

variables to aggregate shocks. Furthermore, note that the additional risk-corrections pro-

vided by the Second-Order approximation have only minor effects on the optimal reaction

of consumption to a TFP shock. In other words, the risk-correction in the First-Order

approximation provides a sensible approximation to the effects of risk in continuous-time

models.
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First-Order (CE) First-Order Second-Order

ε
(0.25)
a 0.0095 0.0014 (−85.7) 0.0003 (−96.4)

ε
(0.25)
b 0.0001 0.0001 (−45.6) 0.0000 (−98.2)

ε
(0.25)
c 0.0001 0.0000 (−99.2) 0.0000 (−98.7)

ε
(1)
a 0.0494 0.0065 (−86.8) 0.0009 (−98.2)

ε
(1)
b 0.0017 0.0009 (−47.7) 0.0001 (−92.0)

ε
(1)
c 0.0018 0.0000 (−97.3) 0.0000 (−98.8)

ε
(5)
a 0.4268 0.1742 (−59.2) 0.0050 (−98.8)

ε
(5)
b 0.0243 0.0096 (−60.3) 0.0069 (−71.5)

ε
(5)
c 0.0302 0.0017 (−94.3) 0.0000 (−99.9)

Table 6. Pricing errors for zero-coupon bonds. The table reports the pricing errors ε(N)

and their reduction relative to First-Order (CE) solution at the deterministic steady state for
pricing zero-coupon bonds with time-to-maturity of three months (N = 0.25), one year (N = 1)
and five years (N = 5), when SDF dynamics are (a) are not observed, (b) partially observed
(drift only) and (c) completely observed (drift and diffusion).

5.4 Asset pricing implications

In this section we investigate the asset implications of the different approximations on

pricing errors defined in Section 4.2. In particular, we quantify the pricing errors an

investor would make if the optimal policy functions are approximated by different per-

turbation solutions. We assess to what extent the First-Order solution reduces pricing

errors relative to the First-Order (CE) solution.

Table 6 reports the absolute pricing errors of zero-coupon bonds with 3-months, 1 year

and 5 years time-to-maturity at the deterministic steady state, ε(N) := ε(N)
(
K,X,A

)
.

Columns 2 − 4 report errors resulting from First-Order (CE), First-Order, and Second-

Order solutions with the reduction in pricing errors relative to First-Order (CE) in paren-

thesis. Moreover, for each time-to-maturity, we report errors for the cases in which the

SDF dynamics are (a) not observed as in (62), (b) partially observed (drift only) as in

(63), or (c) fully observed (drift and diffusion) as in (64).

Our results suggest that there are substantial gains from using the (risk-sensitive)

First-Order relative to the First-Order (CE) version. Consider the case of a three-month

zero-coupon bond with effective price of P = 0.9983. An investor using the certainty

equivalent linear solution (First-Order (CE)) to price zero-coupon bonds will incur in

pricing errors of about 1 dollar for each 100 dollar spent (ε
(0.25)
a = 0.95% in Column 2).

If instead the investor uses the First-Order approximation, the pricing error will be of

the order of 10 cents for each 100 dollars spent (ε
(0.25)
a = 0.14% in Column 3). Hence,

breaking certainty equivalence reduces the potential price mismatch by 85.7%, while still

remaining in the linear world. The Second-Order approximation further reduces pricing

errors which fall to about 3 cents per 100 dollars (ε
(0.25)
a = 0.03% in Column 4). Sizable
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gains are also observed for bonds with longer time-to-maturities and/or for the cases

when inferring the dynamics of the SDF (drift and diffusion) from the data.

Our decomposition shows that the pricing mismatch primarily results from a poorly

approximated risk-free rate. This is important as that misspecified pricing kernel would

be used to price any asset in the economy. We find that although pricing errors increase

as N increases, they can be substantially reduced if the investor uses the true risk-free

rate (or drift of the SDF), which is case (b). In fact, the pricing error for the First-Order

approximation is below 10 cents (ε
(1)
b = 0.09% in Column 3) for the one year time-to-

maturity zero-coupon bond. Relative to the First-Order (CE) solution, the risk-adjusted

First-Order approximation reduces pricing errors by about 50 percent when using the

true risk-free rate. If the investor further knows the true diffusion of the SDF, case (c),

then the First-Order approximation also performs well for maturities of 5 years. Here,

the error is about 20 cents (ε
(5)
c = 0.17% in Column 3), which is about 90% lower than

the error from First-Order (CE) (ε
(5)
c = 3.02% in Column 2).

Figure 3 confirms our results for the case of ex-ante absolute pricing errors. Investors

using a First-Order (CE) solution, when the DGP is the true solution (as approximated

by a collocation method), would accept large and persistent pricing errors (see Lettau

and Ludvigson, 2009): they range between one to five percent for bonds with time-to-

maturities from a quarter to a year (ε
(0.25)
a = 0.95%, ε

(1)
a = 4.94%). On the contrary,

those using the First-Order approximation can reduce these pricing errors by more than

85 percent (ε
(0.25)
a = 0.14%, ε

(1)
a = 0.65%). Again, the pricing errors should just illustrate

the economic consequences of the approximated policy functions. While the absolute

pricing errors could be decreased by including the asset return in the perturbation solu-

tion, the relative pricing error reduction by accounting for risk would prevail (compare

assets with different maturities).

For illustration, the right panel of Figure 3 decomposes the pricing mismatch made

when using the First-Order (CE) solution into: (i) the error stemming from linearization

in the presence of uncertainty; and (ii) the error from imposing certainty equivalence in

the linear world. As (i) is given by the error resulting from the First-Order approxima-

tion, (ii) results as the (absolute) difference of the errors from the First-Order and the

First-Order (CE) approximation, and hence provides a measure of pricing error reduc-

tion (relative to the true solution).15 Therefore, the red area measures the pricing error

that can be attributed to imposing certainty equivalence in the First-Order (CE) solu-

tion, while the blue area measures the error that can be attributed to linearization. As

15The accompanying Online Appendix presents an alternative decomposition according to which we
decompose the pricing error into: (i) the error stemming from certainty equivalence in the nonlinear
world, which would result from a nonlinear certainty equivalent solution; and (ii) the error stemming from
linearization under certainty equivalence. We conclude that the errors induced by certainty equivalence
and those by linearization are similar under both decompositions, which suggests that the entire error
from certainty equivalence is removed by the First-Order approximation.
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Figure 3. Pricing errors: The left panel plots the absolute pricing errors for different
approximations. The right panel decomposes the pricing error incurred by using the First-Order
CE solution into a certainty-equivalence component and a linearization component, where the
line represents |(First-Order)/(First-Order (CE))− 1|.

the red area suggests, between 60% and 100% of the error stemming from the certainty-

equivalence solution for maturities below five years can be reduced by the risk adjustment

of the First-Order solution. For a maturity of 1 year, for instance, 86% of the error in the

First-Order (CE) solution can be attributed to the presence of certainty equivalence itself

and hence reduced by the First-Order approximation. The remaining error resulting from

the First-Order solution, as indicated by the blue area, is inevitable in linear models.

Our results shed light on the key source of the weakness of the linear approxima-

tion from perturbation methods that exhibit the certainty-equivalence property. Thus,

we can conclude that once the vice of certainty equivalence is discarded, similar to the

First-Order approximation in continuous-time models, one may stay with linear models

and at the same time account for risk in a reasonable manner.

6 Conclusions

In this paper we use the fact that certainty equivalence (CE) breaks in continuous-time

stochastic nonlinear models when their rational expectation solution is linearly approxi-

mated around the deterministic steady state. To this end, we generalize the perturbation

framework in Judd and Guu (1993) and Parra-Alvarez (2018) by deriving a first-order

perturbation approximation to the policy functions of a general class of continuous-time

dynamic, stochastic, rational expectation models. We show analytically that the first

derivative of the policy function with respect to the perturbation parameter is different

from zero at the deterministic steady state. Thus, the resulting linear approximation is
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risk-sensitive, i.e., breaks the certainty-equivalence property.

Using an otherwise standard RBC model with internal habit formation and capital

adjustment costs, which is known to generate substantial risk effects (see Jermann, 1998),

we study the economic implications of breaking certainty equivalence in the linear approx-

imation. First, we illustrate the differences between the risk-sensitive and the certainty

equivalent first-order approximation by means of policy functions and impulse response

functions. We show that the risk-sensitive linear approximation differs substantially from

its CE version, and is very close to the second-order approximation. Then, to quantify

the risk effects economically, we consider the asset pricing implications and compute pric-

ing errors. This reveals that the risk-sensitive first-order approximation reduces errors of

pricing a zero-coupon bond by about 90 percent relative to the CE solution which, by

construction, neglects the effects of risk.

We provide intuition for why the first-order perturbation solution in continuous time

accounts for prudence and, hence, is not certainty equivalent. This is the result of two

complementary points. First, in continuous time it is possible to use Itô’s lemma to com-

pute expectations before building the perturbation solution. Second, the perturbation

approximation is built around the variance of the shocks that drive the economy, and not

around the standard deviation, as it is done in discrete time. The implication is that the

linear approximation exhibits a constant correction term that depends on the variance of

the shocks.

Our results encourage the use of continuous-time perturbation to account for risk in

the class of (approximate) linear models, which are especially useful for the computation

and estimation of large-scale macroeconomic models. Given the advantages of perturba-

tion in continuous time, future work should make these advantages more accessible by

developing a toolbox that automates perturbation in continuous-time models.
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Appendix

A Deriving the prototype RBC economy

A.1 The HJB equation and the first-order conditions

The benevolent planner chooses a path for consumption in order to maximize the ex-

pected discounted life-time utility of a representative household. Define the value of the

optimal program as

V (K0, X0, A0) = max
{Ct≥Xt∈R+}∞t=0

U0 s.t. (3)− (8)

in which Ct ≥ Xt ∈ R+ denotes the control variable at instant t ∈ R+.

As a first step, we define the Hamilton-Jacobi-Bellman equation (HJB) for any t ∈
[0,∞)

ρV (Kt, Xt, At) = max
Ct≥Xt∈R+

{
(Ct −Xt)

1−γ

1− γ
+

1

dt
EtdV (Kt, Xt, At)

}
.

Itô’s lemma implies (see e.g., Chang, 2009, ch.3, or Wälde, 2012, ch.10)

dV (Kt, Xt, At) = VK(Kt, Xt, At)dKt + VX(Kt, Xt, At)dXt

+ VA(Kt, Xt, At)dAt + 1
2
VAA(Kt, Xt, At)σ

2
Adt,

where Vi(Kt, Xt, At) := ∂Vi(Kt,Xt,At)
∂i

, and Vij(Kt, Xt, At) := ∂2V (Kt,Xt,At)
∂i∂j

for i, j = Kt, Xt, At.

If we apply the expectation operator to the integral form, substitute dKt, dXt, dAt, and

use the property of stochastic integrals we obtain

EtdV (Kt, Xt, At) =

[(
Φ

(
exp(At)K

α
t − Ct

Kt

)
− δ

)
KtVK(Kt, Xt, At)

+ (bCt − aXt)VX(Kt, Xt, At)− ρAAtVA(Kt, Xt, At) + 1
2
σ2
AVAA(Kt, Xt, At)

]
dt.

Inserting into the HJB equation yields

0 = max
Ct≥Xt∈R+

{
(Ct −Xt)

1−γ

1− γ
+

(
Φ

(
exp(At)K

α
t − Ct

Kt

)
− δ

)
KtVK(Kt, Xt, At)

+ (bCt − aXt)VX(Kt, Xt, At)− ρAAtVA(Kt, Xt, At)

+ 1
2
σ2
AVAA(Kt, Xt, At)− ρV (Kt, Xt, At)

}
.
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The first-order condition for any interior solution reads

(Ct −Xt)
−γ + bVX(Kt, Xt, At) = Φ′

(
exp(At)K

α
t − Ct

Kt

)
VK(Kt, Xt, At), (A.1)

making optimal consumption an implicit function of the state variables, Ct = C(Kt, Xt, At).

A.2 Competitive equilibrium

The maximized (concentrated) HJB equation reads

0 =
(C(Kt, Xt, At)−Xt)

1−γ

1− γ
+

(
Φ

(
exp(At)K

α
t − C (Kt, Xt, At)

Kt

)
−δ

)
KtVK(Kt, Xt, At)

+ (bC(Kt, Xt, At)− aXt)VX(Kt, Xt, At)− ρAAtVA(Kt, Xt, At)

+ 1
2
σ2
AVAA(Kt, Xt, At)− ρV (Kt, Xt, At). (A.2)

The system of equations formed by (A.1) and (A.2) determine the unknown functions

V (Kt, Xt, At) and C(Kt, Xt, At) that characterize the equilibrium in the economy. The

latter can be alternatively represented by the system of equilibrium PDEs associated to

the model costate variables. Differentiation of the maximized HJB equation in (A.2) with

respect to the state variables and the application of the envelope theorem, yields:

• the optimal costate variable with respect to the aggregate capital stock, VK , as

ρVK =
(

Φ((exp(At)K
α
t − Ct)/Kt)− δ

)
KtVKK

+
(

Φ((exp(At)K
α
t − Ct)/Kt) + Φ′((exp(At)K

α
t − Ct)/Kt)((α− 1) exp(At)K

α−1
t

+ Ct/Kt)− δ
)
VK +

(
bCt − aXt

)
VXK − ρAAtVAK + 1

2
σ2
AVAAK ; (A.3)

• the optimal costate variable with respect to the habit formation level, VX , as

ρVX = −(Ct −Xt)
−γ +

(
Φ((exp(At)K

α
t − Ct))− δ

)
KtVKX,t

+ (bCt − aXt)VXX − aVX − ρAAtVAX + 1
2
σ2
AVAAX ; (A.4)

• the optimal costate variable with respect to the total factor productivity, VA, as

ρVA = Φ′((exp(At)K
α
t − Ct)/Kt) exp(At)K

α
t VK

+ (Φ((exp(At)K
α
t − Ct)/Kt)− δ)KtVKA + (bCt − aXt)VXA

− ρAVA − ρAAtVAA + 1
2
σ2
AVAAA, (A.5)
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where Vijl := ∂3V (Kt, Xt, At)/(∂i∂j∂l) for any i, j, l = Kt, Xt, At. Together with the

first-order condition in (A.1), they form a system of nonlinear functional equations in

the unknown (policy) functions
{
VK , VX , VA, C

}
:=

{
VK (Kt, Xt, At) , VX (Kt, Xt, At) ,

VA (Kt, Xt, At) , C (Kt, Xt, At)
}

, where the dynamics of the state variables are given by

the system of controlled SDEs (3), (5), and (7).

A.3 Deterministic steady state

The deterministic steady state (DSS) of the economy is given by the values
{
C, I, V K , V X ,

V A, K,X,A
}

that solve the system of equations

ρ− Φ(I/K)− Φ′(I/K)((α− 1)K
α−1

+ C/K) + δ = 0, (A.6)

(ρ+ a)V X + (C −X)−γ = 0, (A.7)

− (ρ+ ρA)V A + Φ′(I/K)K
α
V K = 0, (A.8)

Φ
(
I/K

)
− δ = 0, (A.9)

bC − aX = 0, (A.10)(
C −X

)−γ
+ bV X − Φ′

(
I/K

)
V K = 0, (A.11)

A = 0, (A.12)

which results from imposing σA = 0 together the idle condition dKt/dt = dXt/dt =

dAt/dt = 0 on the equilibrium PDEs (A.3)-(A.5), and where I/K = (K
α − C)/K.

The solution to this system of nonlinear equations is entirely determined by the steady

state value of the investment-capital ratio, I/K. Given the values for a1 and a2, it immedi-

ately follows that for any value of ξ, the DSS value for the investment-capital ratio satisfies

I/K = δ. Then, Φ(δ) = δ, Φ′(δ) = 1, and Φ′′(I/K) = Φ′′(δ) = −1/(ξδ). From (A.6),

the steady-state value of the capital stock is K = [α/ (ρ+ δ)]
1

1−α . Using the definition

of the investment-capital ratio, the steady-state value of consumption is C = K
α − δK.

From (A.10) we pin down the steady-state value of the habit as X = b
a
C. Finally using

(A.7), (A.8), and (A.11) we find the steady-state values for the costate variables V X =

−1/(ρ+ a)
(
C −X

)−γ
, V K = (1− b/(ρ+ a))

(
C −X

)−γ
, and V A = K

α
V K/(ρ+ ρA).

A.4 Model class

Let y = [VK , VX , VA]> be the vector of costate variables and x = [K,X,A]> the vector of

state variables. From the first-order condition (11), optimal consumption C = C (x,y)

is implicitly defined by

∆(x,y, C) = (C −X)−γ + bVX − Φ′(I/K)VK = 0,

39



where ∆ : Rn+1 → R is a continuous and differentiable function, and I (x,y) = exp(A)Kα−
C (x,y) is the optimal level of investment. Under certain weak conditions, the implicit

function theorem guarantees the local existence of a function C for which ∆(x,y, C (x,y)) =

0 in a neighborhood of a given point (x0,y0, C0) for which ∆(x0,y0, C0) = 0. Then, the

equilibrium of the RBC model with capital adjustment costs and habit formation can be

represented by the system of quasilinear PDEs

H (x,y,yx,yxx; η) := a (x,y) + yxb (x,y) + ηyxxc = 0,

with

a (x,y) =

 −VK (ρ− Φ(I/K)− Φ′(I/K)((α− 1) exp(A)Kα−1 + C/K) + δ)

− (ρ+ a)VX − (C −X)−γ

Φ′(I/K) exp(A)KαVK − (ρA + ρ)VA

 ,

b (x,y) =

 (Φ(I/K)− δ)K
bC − aX
−ρAA

 , c =
[
0, 0, 0, 0, 0, 0, 0, 0, 1

2
σ2
A

]′
.

Moreover, since the prototype economy corresponds to a stochastic optimal discounted

control problem it is possible to decompose a(x,y) according to (21) with

ã (x,y) =

 0

− (C −X)−γ

0

 , and

b>x (x,y) =

 (Φ(I/K) + Φ′(I/K)((α− 1) exp(A)Kα−1 + C/K)− δ) 0 0

0 −a 0

Φ′(I/K) exp(A)Kα 0 −ρA

 .
A.5 Stochastic discount factor

When habits in consumption are internal, the agent takes into account the effect of today’s

consumption decisions on the future levels of habits. Following Detemple and Zapatero

(1991), the SDF in this case is given by

mt = κe−ρt

{
(Ct −Xt)

−γ − bEt

[ ∞̂

t

e−(ρ+a)(s−t) (Cs −Xs)
−γ ds

]}
, (A.13)

for some given constant κ.

To arrive at equation (56), let us first compute the dynamics of the costate variable

with respect to the habit level, VX := VX(Kt, Xt, At). Using Itô’s Lemma, the evolution
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of the (off-equilibrium) costate variable is given by (see Wälde, 2012)

dVX =

((
Φ(exp(At)K

α
t − Ct/Kt)− δ

)
KtVXK + (bCt − aXt)VXX

− ρAAtVXA + 1
2
σ2
AVXAA

)
dt+ σAVXAdBA,t. (A.14)

Combining equations (A.4) and (A.14) yields the optimal or equilibrium dynamics for

VX as

dVX =
(

(ρ+ a)VX + (Ct −Xt)
−γ
)

dt+ σAVXAdBA,t. (A.15)

Multiplying by e−(ρ+a)t on both sides yields

e−(ρ+a)tdVX = e−(ρ+a)t
(
(ρ+ a)VX + (Ct −Xt)

−γ) dt+ e−(ρ+a)tVXAσAdBA,t,

or equivalently

e−(ρ+a)t(dVX − (ρ+ a)VXdt) = e−(ρ+a)t (Ct −Xt)
−γ dt+ e−(ρ+a)tVXAσAdBA,t.

Notice that Itô’s formula yields

d(e−(ρ+a)tVX) = −(ρ+ a)e−(ρ+a)tVX + e−(ρ+a)tdVX

such that

d(e−(ρ+a)tVX) = e−(ρ+a)t (Ct −Xt)
−γ dt+ e−(ρ+a)tVXAσAdBA,t.

Integrating forward in time on both sides yields

ˆ T

t

d(e−(ρ+a)sVX,s) =

ˆ T

t

e−(ρ+a)s (Cs −Xs)
−γ ds+

ˆ T

t

e−(ρ+a)sVXA,sσAdBA,s

⇔ VX,t = e−(ρ+a)(T−t)VX,T −
ˆ T

t

e−(ρ+a)(s−t) (Cs −Xs)
−γ ds

−
ˆ T

t

e−(ρ+a)(s−t)VXA,sσAdBA,s.

Applying the expectation operator (assuming existence of the integrals) implies

Et [VX,t] = e−(ρ+a)(T−t)Et [VX,T ]− Et
[ˆ T

t

e−(ρ+a)(s−t) (Cs −Xs)
−γ ds

]
.
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Further, by letting limT→∞ e
−(ρ+a)(T−t)E [VX,T ] = 0, we may write

VX,t := lim
T→∞

Et [VX,t] = −Et
[ˆ ∞

t

e−(ρ+a)(s−t) (Cs −Xs)
−γ ds

]
such that (A.13) can be written as

mt = e−ρt
[

(Ct −Xt)
−γ + bVXt

]
, (A.16)

and the SDF is

ms/mt = e−ρ(s−t)
(Cs −Xs)

−γ + bVX,s

(Ct −Xt)
−γ + bVX,t

.

Notice that the SDF is implicitly determined by the state variables of the economy

through its dependence on Ct and VX,t. Then, using Itô’s lemma, the dynamics of mt is

given by
dmt

mt

= µmdt+ σmdBA,t, (A.17)

where the drift and diffusion coefficients are

µm = −ρ− (Ct −Xt)
−γ

(Ct −Xt)
−γ + bVX,t

[
γ (Ct −Xt)

−1
(
µC − (bCt − aXt)

)
−b (Ct −Xt)

γ µVX − 1
2
γ (γ + 1) (Ct −Xt)

−2 σ2
C

]
, (A.18)

σm = − (C −X)−γ

(C −X)−γ + bVX

[
γ (C −X)−1 σC − b (C −X)γ σVX

]
. (A.19)

Note that (A.18) and (A.19) depend on the drift and diffusion coefficients of the policy

functions for consumption and the costate variable for habit. By an application of Itô’s

lemma on C(Kt, Xt, At) and VX(Kt, Xt, At), it follows that

µC = CK

[
Φ

(
exp(A)Kα − C

K

)
− δ
]
K + CX (bC − aX)− CAρAA+ 1

2
CAAσ

2
A,

µVX = VXK

[
Φ

(
exp(A)Kα − C

K

)
− δ
]
K + VXX (bC − aX)− VXAρAA+ 1

2
VXAAσ

2
A,

σC = CAσA,

σVX = VXAσA.

One can alternatively obtain µVX directly from (A.15) as µVX = (ρ+ a)VX + (C −X)−γ.
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B Proofs

B.1 Proof of Proposition 1

Differentiating (24) with respect to x yields the nx × nx system of equations

Fx (x; η) = ax + aygx + Ωa
x + gx

(
bx + bygx + Ωb

x

)
+gxx (Inx ⊗ b) + ηgxx (cx + cygx + Ωc

x) + ηgxxx (Inx ⊗ c) = 0, (B.1)

where Ωm
x = Dx>{m (·, ·, ηyx)} is given by

Ωm
x = η

(
(vec Inx)

> (Inx ⊗ gxx)
(
Knx,nx ⊗

(
Inx1{m=a∨b} + In2

x
1{m=c}

))
⊗ Inx

)
×
(
Inx ⊗m(vecyx)>

)
,

for m = {a,b, c}, 1{·} is an indicator function, and Knx,nx is an n2
x×n2

x commutation ma-

trix (see Magnus and Neudecker, 2019). Evaluating (B.1) at the DSS (x,y, η) = (x,y, 0)

yields

ax + aygx + gxbx + gxbygx = 0.

From (21) it follows that

ax + aygx = ãx + bxx (Inx ⊗ y) + b
>
x gx − ρgx

= ãx + bxx (Inx ⊗ y) + b
>
x gx − 1

2
ρgx − gx

1
2
ρ.

Substituting back yields the desired result

A>gx + gxA + gxCgx + B = 0,

where C = by, B = ãx + bxx (Inx ⊗ y), and A = bx − ρ
2
Inx .

B.2 Proof of Theorem 1

Differentiating (24) with respect to η yields the nx × 1 system of inhomogeneous linear

equations

Fη (x; η) = aygη + Ωa
η + gx

(
bygη + Ωb

η + bη
)

+gxηb + gxxc + η
(
gxx

(
cygη + Ωc

η

)
+ gxxηc

)
= 0, (B.2)

where Ωm
η = Dη{m (·, ·, ηyx)} is given by
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Ωm
η =

[(
(vec Inx)

> (Inx ⊗ gx)

+ η (vec Inx)
> (Inx ⊗ gxη) (Knx,1 ⊗ Inx)

)
⊗
(
Inx1{m=a∨b} + In2

x
1{m=c}

) ]
m(vec ηyx)> ,

for m = {a,b, c}, 1{·} is an indicator function, and Knx,1 is an nx×nx commutation ma-

trix (see Magnus and Neudecker, 2019). Evaluating (B.2) at the DSS (x,y, η) = (x,y, 0),

the system of equations reduces to

(
ay + gxby

)
gη + Ω

a

η + gx

(
Ω

b

η + bη

)
+ gxxc = 0. (B.3)

The desired result follows from solving for gη in (B.3).

B.3 Proof of Proposition 2

Define qm := (vec Inx)
> (Inx ⊗ gxx)

(
Knx,nx ⊗

(
Inx1{m=a∨b} + In2

x
1{m=c}

))
⊗Inx and rm :=

Inx⊗a(vecyx)> for m = {a,b, c}, where 1{·} is an indicator function. Then, differentiating

(B.1) with respect to x yields the nx × n2
x system of linear equations

Fxx (x; η) = axx + axy (gx ⊗ Inx) + Ωax
x + (ayx + ayy (gx ⊗ Inx) + Ωay

x ) (Inx ⊗ gx)

+aygxx + Ωa
xx + gxx

(
Inx ⊗

(
bx + bygx + Ωb

x

))
+gx

(
bxx + bxy (gx ⊗ Inx) + Ωbx

x +
(
byx + byy (gx ⊗ Inx) + Ωby

x

)
(Inx ⊗ gx)

+bygxx + Ωb
xx

)
+ gxxx (Inx ⊗ (Inx ⊗ b))

+gxx

(
Inx ⊗

(
bx + bygx + Ωb

x

))
Knx,nx

+ηgxxx (Inx ⊗ (cx + cygx + Ωc
x)) + ηgxx (cxx + cxy (gx ⊗ Inx) + Ωcx

x

+
(
cyx + cyy

(
gx ⊗ Iny

)
+ Ωcy

x

)
(Inx ⊗ gx) + cygxx + Ωc

xx

)
+ηgxxxx (Inx ⊗ (Inx ⊗ c)) + ηgxxx (Inx ⊗ (cx + cygx + Ωc

x)) Knx,nx = 0,(B.4)

where Ωm
x = Dx>{m (·, ·, ηyx)} is defined in the proof to Proposition 1. Moreover,

Ωm
xx = Ωmx

x := D(x>)2{m (·, ·, ηyx)} is given by Ωm
xx = η (qm

x (Inx ⊗ rm) + qm rmx ), with

qm
x = (vec Inx)

> (Inx ⊗ gxxx)
(
Knx,nx ⊗ In2

x

)
×
(
Inx ⊗

(
Knx,nx ⊗

(
Inx1{m=a∨b} + In2

x
1{m=c}

)))
⊗ Inx ,

and

rmx =
(
Inx ⊗

(
m(vecyx)>x + m(vecyx)>ygx + ηm(vecyx)>(vecyx)>vec gxx

))
Knx,nx .

Evaluating (B.4) at the DSS (x,y, η) = (x,y, 0) yields the desired result.
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