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B.1 General equilibrium prices in the endowment economy

We use the stochastic differential for consumption implied by the Euler equation (39) and

the market clearing condition C; =Y} together with the exogenous dividend process (7).

Proposition B.1 (Asset pricing) In general equilibrium, market clearing implies
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as well as implicitly the portfolio jump-size
C((L=Cu(t))Wy) = exp()C(W).

Proof. Using the inverse function, we are able to determine the path for consumption
(u” # 0). From the Euler equation (39), we obtain

dCy = ((p— par + MU (Cy) Ju" (Cy) — a3, WOy — 30" (Cy) Ju" (Cy) oy WEChy
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where we employed the inverse function ¢ = g(u'(c¢)) which has

g (W(e)) =1/u"(c), g"(u'(c)) = —u"(c)/(u"(c))".

Economically, concave utility (u/(¢) > 0, u”(¢) < 0) implies risk aversion, whereas convex
marginal utility, "’ (¢) > 0, implies a positive precautionary saving motive. Accordingly,

u”(c)/u'(c) measures absolute risk aversion, whereas —u"(c)/u”(c) measures the degree of
absolute prudence, i.e., the intensity of the precautionary saving motive.

Because output is perishable, using the market clearing condition Y; = C; = A;, and
dCt = /]Ctdt + 5'CtdBt —+ (eXp(D) — 1)Ct,dNt,

the parameters of price dynamics are pinned down in general equilibrium. In particular, we
obtain J; implicitly as function of v, D;, and the curvature of the consumption function,
where C(W,) = C((1 — Cu ()W) /C (W) defines optimal consumption jumps. For market

clearing we require the percentage jump in aggregate consumption to match the size of the



disaster, exp(v) = C(W,), and thus exp(v) = C((1 + (J; — Dy)w, + Dy)Wy) /C (W) implies a

constant jump size. For consumption being linear homogeneous in wealth,
gM = 617 — 1.

Similarly, the market clearing condition pins down o,,W;Cy = ¢C}, and
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Inserting our results back into (B.1), we obtain that consumption follows
W) (C)
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This in turn determines the return on the riskless asset
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As a result, the higher the subjective rate of time preference, p, the higher is the general
equilibrium interest rate to induce individuals to defer consumption (cf. Breeden, 1986). For
convex marginal utility (decreasing absolute risk aversion), u”’(¢) > 0, a lower conditional
variance of dividend growth, &2, and a higher conditional mean of dividend growth, ji, and

a higher default probability, ¢, decrease the bond price and increases the interest rate. m

Proposition B.2 (PDE approach) An alternative characterization of the no-arbitrage
condition is given by the PDFE

d(thtd) Ct
E | — —dt = 0.
' [ thtd * Ptd !

Proof. By application of 1t0’s formula

d(thtd) = (dPtd — (617 — 1)Ptd_dNt)mt + (dmt — (6_717 — 1)mt_dNt)Ptd + dmthtd
+(6(1_7)D — 1)mt_Ptd_dNt

such that

E, [d(mP)] = E, [dP] mi+ E;[dmy] P} + E; [dm,d P}
+(=(e” = 1) = (77 = 1) + (P77 — 1) APm,dt

and thus the instantaneous return to the asset in (48) is

EEt [dRﬂ = T{ - EEt

: 2 [T — (e - ) = e - )= (e - )
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where we defined dR{ = (dP?)/P¢ + (A;/PY)dt. Inserting the solution in (49) yields

—(r—(1—e"egA+ (e = DA) + (777 = DA+ i+ (&7 — 1)\ — v5°

— 27+ + A — (1 — (1 —e)g)e "\
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which completes the proof that the PDE approach gives the same price P¢. m

B.2 An alternative mimicking economy with rare events

B.2.1 The underlying production economy

Consider the representative-agent neoclassical production economy in Appendix A.3. The
following propositions show the optimal consumption function, the SDF, and the equilibrium

prices for different asset classes, for the parametric restriction oo = .

Proposition B.3 (Linear-policy-function) Suppose the production function F(K,, L) is
Y; = A KP LY, utility has constant relative risk aversion, i.e., —u"(Cy)Cy/u'(Cy) = vy, and

let a =~ (with v < 1). Then optimal consumption is linear in wealth.

a=v = C =C(W,)=FkW, (B.2)
k=(p— ("7 = DA+ (1 =7)0) /v + 5(1 = 7)a?,

where k denotes the marginal propensity to consume out of (physical) wealth.

Proof. The idea of the proof follows closely that of Proposition A.9. An educated guess of

the value function is

o Cthl_,y

V(W Ay) = + f(Ar). (B.3)

From (55), optimal consumption is a constant fraction of wealth,

Cor=CW, e C=C"wW



Now use the maximized Bellman equation (56), the property of the Cobb-Douglas technology,
Fx = A K L and Ff, = (1-a) AKX L, together with the transformation K, = LW,
and insert the solution candidate to obtain
1y
c,w o oc, T W

= T @AW W (1 ) A c Wy

CyWw,}

~ 1O 0% - g(4) + (0 - )=
-7

A,

where we defined g(A;) = pf(Ar) — fafiAi — 5 faac? A7 — [f(e” A) — f(Ay)]A. When imposing

the condition a@ = v and g(A;) = C;A; it can be simplified to

(C*l_;lwlf’Y
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which implies that C;"/7 = (p— (""" = 1A+ (1 — )8 + 1v(1 — v)o?) /. This proves
that the guess (B.3) indeed is a solution, and by inserting the guess together with the

constant, we obtain the optimal policy function for consumption. m

Proposition B.4 (Rental rate of capital) Suppose the production function F(Ky, L) is
Y; = AL K2 LY. The rental rate of capital is obtained from the marginal product of capital,

re = aA K, and follows the reducible stochastic differential equation,

dry = (02 — rt)rtdt + (a — 1)ordZ; + 6rdBy + (exp((a — 1)v) — 1)r,_dN,
+(exp(v) — 1)r,_dN, (B.4)
in which the constants ¢y and co for the parametric restriction o =~y are given by

l—«
o )

1 o =ak+ad— La(a—2)0” — 2.
Proof. The idea of the proof is along the lines of Proposition A.10 =

Proposition B.5 (Stochastic discount factor) Following the assumptions in Proposi-
tion B.3, the stochastic discount factor (SDF) is given by

ms/mt — e fts(m,—6)dv+[)\—e(1*ﬂ”)\+'y02—%(70)2}(5—1?)—70(25—Zt)—'yl/(Ns—Nt). (B5)

Proof. The idea of the proof is along the lines of Proposition A.11 m



Proposition B.6 (Risky bond) Consider a risky asset that pays at the rate r, in t + 1.

The one-period holding return of an asset with the random payoff Xy 41 = ey T reds g

t+1
RV, = exp </ (ry — 6 —yo® —e (1 — e”))\)dv) : (B.6)
t

Proof. Substitute the random payoff X;,;; in (2) to obtain the equilibrium price of this

risky bond at time ¢ as

Pb — F Myt efthq rsds
t t my :
Using the definition of the SDF (B.5) and making use of Lemma (A.1) yields
Pb o €5+702+e’7”)\76(1’7)”)\
) = :

For any s > t, R? = X, ,/P? denotes the gross return on the risky bond. The desired result
follows by setting s =¢t+1. m

Proposition B.7 (Risky asset) The one-period holding return on an asset that pays one

unit of output Xo, 1 = A1 K7y s
R, =exp (/ (ro—6—135"— XA+ eI\ — yo? 4 L(yo)® = (" — l)A)dv)
¢
x exp (6(Bs — By) + ao(Zs — Z;) + av(Ns — Ny) 4+ 0(Ny — Ny)) . (B.7)
Proof. For any s > t it follows from (62) and (63) that

AsKa — Athe(ﬁféc?Q)(sft)Jrfts (rv7an/Kvfa57a%02)var&(BSth)Jraa(ZS7Zt)+au(stNt)+D(stNt) )

Set s = t + 1 and substitute the random payoff X.;;; together with the definition of the
SDF (B.5) into (2). Making use of Lemma (A.1) compute the equilibrium price of this risky

asset at time ¢ as

m
Pro= Et{ t+1At+1Kg+1}

my
= Ptc — Et |:AtKéxeﬁf%62fakfaéfa%02+5+A76(1’“/>”)\+7027%('\/0)2+6(Bt+1th)JrD(Nt_Hth)]

Athoze—(ozk—l—aé—l—oz%02—6—)\—1—6(1*”)”)\—702-{—%('ya)Q —f—(e"—=1)N) )

For any s > t, RS = X.,/P} denotes the gross return on the risky bond. The desired
result follows by setting s =t+1. =



B.2.2 Euler equation errors for a =~

Consider two assets, i.e., the risky bond, R’ 11, and the risky claim on output, R; ;. From

the definition of Euler equation errors (3), for any asset i and CRRA preferences

63% _ Et |:e_ ttJrl(rs—é)d8+)\—e(1—7)v)\+’yo'2_%('70’)2_'yo'(Zt+1—Zt)—’yl/(Nt+1—Nt) i+1i| _ 1’

where we inserted the SDF's from (B.5). Inserting the one-period holding equilibrium returns
for the risky bond (B.6) yields

&, = E, [eafe-wnf%(vo>27vo<zt+1fzafw(NHrNt)} 1
Conditional on no disasters, on average we can rationalize Euler equation errors

e%\Nt-H*Nt:O = €Xp ((1 — e*'y”))\) — 17

or, conditional on no rare events, on average we can rationalize Euler equation errors
b _ _ — _ oW _
€R|Nt+1—Nt:Nt+1—Nt:0 - eXp ((1 € )A) 1
Similarly, inserting the return on the claims on output (B.7) we obtain

¢5, = FE, e*%62,(eﬁfl)S\Jr&(Bt_Hth)+D(Nt+1—Nt)i|_1.

Note that EE errors based on excess returns are obtained from e = ef, — ¢% for any asset i.

B.2.3 The mimicking endowment economy for a = v

Technology. Suppose production of perishable output, Y;, is exogenously given: there is no
possibility of affecting the output at any time. Let Y; = akA; K /ry = kK, where K, is the
aggregate capital stock, and A; is stochastic technology or total factor productivity (TFP).
Output is perishable. The law of motion of A, is given in (50).

The capital stock is subject to stochastic depreciation,
th = (AtK? — (kf + 5)Kt)dt + O'thZt + (eXp(l/) — 1)Kt_dNt, s (B8)

in which Z; is a standard Brownian motion (uncorrelated with B;), and N; is a Poisson
process with constant arrival rate A.

Thus, in the mimicking endowment economy with a = p, output follows
Y, = k(AK]} — (k+90)K,)dt + okKdZ; + (exp(v) — 1)kK;_dN,
= (4K = (k+0))Yidt + oY,dZ; + (exp(v) — 1)Y;_dN;
= (r/a—(k+)9))Ydt + oYidZ; + (exp(v) — 1)Y;_dN;
= Yedt + 00YdZ, + (Y — Yo )dN,
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with i, = r,/a — (k +6), 0, = 0 and r, = a A, K", such that

dry, = ¢ (02 — rt)rtdt + (a — 1)ordZ; + ord By + (exp((a — 1)v) — 1)r,_d N,
+(exp(7) — 1)re_dN; (B.9)

in which ¢; = 1?70‘, and ¢y = ak + ad — %a(a —2)0? — )

Preferences. The representative consumer maximizes expected discounted lifetime utility
given in (8) and (9). Further assume that 1/1) = 7 such that the problem is reduced to the
standard power utility case in (10).

Equilibrium. In this economy, it is easy to determine equilibrium quantities and the
equilibrium asset holdings. The economy is closed and all output will be consumed, C; =Y},

and households own the physical capital. All other assets are zero in net supply.



B.3 Tables and Figures

Table B.1: Robustness: Simulation study (endowment economy)

n @ 6 (4)

p rate of time preference 0.03 0.03 0.03 0.03
v coef. of relative risk aversion 0.5 4 4 4
i consumption growth 0.01 0.01 0.01 0.01
o consumption noise 0.005 0.005 0.005 0.005
—0U  size of consumption disaster 0.4 0.4 0.4 0
A consumption disaster probability 0.017 0.017 0.017 O
—k  size of government default 0 0 0.3 0
q default probability 0 0 0.5 0

Table B.2: Robustness: Simulation study (production economy)

ORI B 4

p rate of time preference 0.03 0.024 0.016 0.03

v coef. of relative risk aversion 0.5 4 4 4

« output elasticity of capital 0.5 0.6 0.6 0.6

6 capital depreciation 0.025 0.025 0.025 0.05

i productivity growth 0.02  0.01 0.01 0.01

o productivity noise 0.01 0.01 0.01 0.01
—v  size of productivity slump 0.01 0.01 0 0

A\ productivity jump probability 0.2 0.2 0 0

o capital stochastic depreciation 0.005 0.005 0.005 0.005
—v  size of capital disaster 0.55 0.55 0.55 0

A capital disaster probability 0.017 0.017 0.017 O

Table B.3: Robustness: Simulation study (long-run risk model)

(1) (2) (3) (4)

p rate of time preference 0.024 0.024 0.03 0.02

v coef. of relative risk aversion 10 7.5 10 30

¢ EIS 1.5 1.5 1.5 1.5

I consumption growth 0.018 0.018 0.018 0.018
k,  LRR persistence 0.256 0.256 0.3 0.256
v, LRR volatility multiple 0.528 0.528  0.456 0.456
¥ baseline volatility (x100) 0.0729 0.0729 0.0625 0.0625
Ky  persistence volatility 0.156 0.156  0.015 0.156
vy  vol-of-vol 0.0035 0.0035 0.0027 0.0027




Figure B.1: General equilibrium asset returns
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Notes: This figure illustrates the equilibrium asset returns and shows one realization of the return to the bonds and the risky
assets in the simple endowment economy (upper two panels, parameterization (2) in Table B.1) and the endowment economy
mimicking a production economy (lower two panels, parameterization (2) in Table B.2), respectively.
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Table B.4: C-CAPM simulation results (endowment economy)

The table reports the simulated Euler equation (EE) errors and RMSE (both annualized) for the standard
C-CAPM observed at quarterly frequency in the endowment economy with rare events (cf. Section 3.1) for a
parameterization as in column (3) in Table B.1; the bond return, the equity return, the equity premium and
consumption growth (all annualized); and the GMM estimates of ¢ = (3,7) " with 8 = 0.97 and v = 4 based
on moments (15), and the estimated EE errors and RMSE (both annualized). Simulated data is generated

using 5,000 Monte Carlo sample paths, each of length 50 years.

6000

50

Results analytical solution unconditional
parameterization (3) Mean Std. dev. Mode Median
e% EE error risky bond 0.09 6.61 —5.55 —0.14
e EE error excess return —0.12 2.59 1.68 0.72
RMSE root mean square error 3.86 3.20 4.05 3.98
Observed random variables
RY.,  bill return 1.16 0.36  1.35 1.35
Y11 equity return 2.49 0.62 3.04 2.45
Ry Rfﬂ equity premium 1.34 0.50 1.68 1.52
In(Cy41/Cy) consumption growth 0.33 0.75  0.98 0.27
Parameter estimates
B factor of time preference 1.07 0.14 0.98 0.99
4 coef. of relative risk aversion 356.98 434.27 5.00 5.40
e% EE error risky bond 0.00 0.00 0.00 0.00
e EE excess return 0.00 0.00 0.00 0.00
RMSE root mean square error 0.00 0.00 0.00 0.00
Estimated beta Estimated gamma
OTO 0T5 1 TO 1 i5 S (; 1 (;OO ZO}JO 3(;00 40})0 50‘00 Y
Annualized RMSE fitted (%) Annualized true RMSE (%)
g o JDULA_
3 0.0614-00 5.0;—09 106‘—08 1.54—08 (; 1‘0 2}] 3}) 45 ‘
Annualized equity premium (%) Annualized consumption growth (%)
: _—— e, N g {— ; N, /
¥ 0 i 2 3 o G 0
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Table B.5: C-CAPM simulation results (production economy)

The table reports the simulated Euler equation (EE) errors and RMSE (both annualized) for the standard
C-CAPM observed at quarterly frequency in the production economy with rare events (cf. Section 3.2) for a
parameterization as in column (2) in Table B.2; the bond return, the equity return, the equity premium and
consumption growth (all annualized); and the GMM estimates of ¢ = (3,7) " with 8 = 0.98 and v = 4 based
on moments (15), and the estimated EE errors and RMSE (both annualized). Simulated data is generated
using 5,000 Monte Carlo sample paths, each of length 50 years.

Results constant-saving-function, unconditional
parameterization (2) Mean Std. dev. Mode Median
e% EE error risky bond 0.61 4.73 0.75 0.63
e EE error excess return —0.60 4.70 —-0.75 —0.74
RMSE root mean square error 3.69 3.00 0.68 4.36
Observed random variables
RY., bill return (gross) 7.40 1.10  6.39 7.21
£,1 equity return (gross) 10.74 0.77  10.82 10.86
R¢. ., —RY,  equity premium 3.34 1.27  3.32 3.31
In(Cy41/Cy) consumption growth 1.80 0.43 1.71 1.84
Parameter estimates
B factor of time preference 0.93 0.37 0.99 0.99
4 coef. of relative risk aversion 152.20 314.21 2.50 3.55
e% EE error risky bond —0.01 0.02 0.00 0.00
e EE excess return 1.14 1.78 0.00 0.00
RMSE root mean square error 0.81 1.26 0.00 0.00
Estimated beta Estimated gamma
21 g
OTO Oj5 110 1i5 ZTO 2i5 ° (; 5(;0 1(;00 15})0 2000 2500 3000
Annualized RMSE fitted (%) Annualized true RMSE (%)
o T T g
0‘0 0‘5 1‘0 1‘5 2‘0 2‘5 3‘0 3T5 °© 0 5 10 15 20 25 30
Annualized equity premium (%) Annualized consumption growth (%)
° (; ; é (; jl ;3 é - 0‘0 015 1‘0 1?5 2‘0 2‘5 3‘0

12



Table B.6: C-CAPM simulation results (production economy)

The table reports the simulated Euler equation (EE) errors and RMSE (both annualized) for the standard
C-CAPM observed at quarterly frequency in the production economy with rare events (cf. Section 3.2) for a
parameterization as in column (3) in Table B.2; the bond return, the equity return, the equity premium and
consumption growth (all annualized); and the GMM estimates of ¢ = (3,7) " with 8 = 0.98 and v = 4 based
on moments (15), and the estimated EE errors and RMSE (both annualized). Simulated data is generated

using 5,000 Monte Carlo sample paths, each of length 50 years.

Results constant-saving-function, unconditional
parameterization (3) Mean Std. dev. Mode Median
e% EE error risky bond 1.00 5.23 1.05 0.76
e EE error excess return —0.87 5.21 —0.87 —-0.73
RMSE root mean square error 3.97 3.52 0.68 4.32
Observed random variables
RY., bill return (gross) 7.93 1.25 7.01 7.69
£,1 equity return (gross) 11.20 0.78 11.66 11.34
Ry Rfﬂ equity premium 3.27 1.44 3.27 3.33
In(Cy41/Cy) consumption growth 2.10 0.45  2.42 2.15
Parameter estimates
B factor of time preference 0.94 0.50 1.00 0.99
4 coef. of relative risk aversion 267.66 520.80 5.00 3.56
e% EE error risky bond —0.01 0.01 0.00 0.00
e EE excess return 0.95 1.57 0.00 0.00
RMSE root mean square error 0.67 1.11 0.00 0.00
Estimated beta Estimated gamma
L g
0 : 2 3 4 S 0 2000 4000 6000
Annualized RMSE fitted (%) Annualized true RMSE (%)
° OTO 0T5 1T0 1‘5 2‘0 2?5 3‘0 3‘5 ° (; 1‘0 1% 2}) 55 35
Annualized equity premium (%) Annualized consumption growth (%)
VA ; : “4s oo o5 1o 15 20 25 a0
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Table B.7: C-CAPM simulation results (long-run risk model)

The table reports the simulated Euler equation (EE) errors and RMSE* (both annualized) for the standard
C-CAPM observed at quarterly frequency in the endowment economy with long-run risk (cf. Appendix A.4)
for a parameterization as in column (2) in Table B.3; the bond return, the equity return, the equity premium
and consumption growth (all annualized); and the GMM estimates of ¢ = (3,7)" with 8 =0.98 and v = 7.5
based on moments (15), and the estimated EE errors and RMSE (both annualized). Simulated data is

generated using 5,000 Monte Carlo sample paths, each of length 50 years.

Density
02 46 8

Density

Density
0.4

2.0e+13

0.8 0.0e+00

0.0

Results approximate solution unconditional
parameterization (2) Mean Std. dev. Mode Median
R}, — E(R},,) pricing error bond 0.00 0.50 —0.09 0.00
R}, — E(R{, ) pricing error risky asset 0.00 084 016  —0.01
RMSE* root mean square error 0.61 0.44 0.27 0.51
Observed random variables
RY.,  bill return 2.85 051 277 2.85
R}, equity return 4.02 0.85 3.98 4.01
Rfﬂ Rfﬂ equity premium 1.17 0.47 1.08 1.17
In(Cy11/Cy)  consumption growth 1.76 0.85  1.65 1.76
Parameter estimates
B factor of time preference 1.05 0.05 0.99 1.04
4 coef. of relative risk aversion 16.03 6.67 14.05 15.78
b, EE error risky bond 0.00 0.00  0.00 0.00
R Yy
e EE excess return 0.00 0.00 0.00 0.00
RMSE root mean square error 0.00 0.00 0.00 0.00
Estimated beta Estimated gamma
1?0 111 1?2 1?3 ° —1I0 (I) 1I0 2I0 3I0 4I0
Annualized RMSE fitted (%) Annualized RMSE* (%)
0.0614-00 2.06;—14 4.09‘—14 6.06“—14 8.0el—14 1.06:—13 1.29‘—13 ° OTO OTS 110 175 ZTO 275 310
Annualized equity premium (%) Annualized consumption growth (%)
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Table B.8: C-CAPM simulation results (long-run risk model)

The table reports the simulated Euler equation (EE) errors and RMSE* (both annualized) for the standard
C-CAPM observed at quarterly frequency in the endowment economy with long-run risk (cf. Appendix A.4)
for a parameterization as in column (4) in Table B.3; the bond return, the equity return, the equity premium
and consumption growth (all annualized); and the GMM estimates of ¢ = (3,v)" with 8 = 0.98 and v = 30
based on moments (15), and the estimated EE errors and RMSE (both annualized). Simulated data is
generated using 5,000 Monte Carlo sample paths, each of length 50 years.

Results approximate solution unconditional
parameterization (4) Mean Std. dev. Mode Median
R}, — E(R},,) pricing error bond 0.00 0.46  0.22 0.01
R}, — E(R{, ) pricing error risky asset 0.00 0.70 -0.14  —0.01
RMSE* root mean square error 0.53 0.35 0.24 0.45
Observed random variables
RY.,  bill return 0.57 0.46  0.80 0.58
R}, equity return 4.62 0.70  4.49 4.61
Rfﬂ — Rfﬂ equity premium 4.05 0.48 4.07 4.04
In(Cy11/Cy)  consumption growth 1.77 0.70 171 1.76
Parameter estimates
B factor of time preference 0.94 0.09 0.92 0.94
4 coef. of relative risk aversion  66.42 12.49  65.50 65.09
e% EE error risky bond 0.00 0.00 0.00 0.00
e EE excess return 0.00 0.00 0.00 0.00
RMSE root mean square error 0.00 0.00 0.00 0.00
Estimated beta Estimated gamma
0i8 1i0 1T2 1i4 s 4}) 6}) 8}) 1(;0 1é0 1;0
Annualized RMSE fitted (%) Annualized RMSE* (%)
3 091—00 29i14 4el14 Gei14 86114 16113 ° OTO Oj5 1j0 1T5 ZTO 2T5
Annualized equity premium (%) Annualized consumption growth (%)
° ; : : : R
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