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B.1 General equilibrium prices in the endowment economy

We use the stochastic differential for consumption implied by the Euler equation (39) and

the market clearing condition Ct = Yt together with the exogenous dividend process (7).

Proposition B.1 (Asset pricing) In general equilibrium, market clearing implies

µM − r = −
u′′(Ct)CWWt

u′(C(Wt))
σ2
M −

u′(eν̄C(Wt))

u′(C(Wt))
((1− eκ)q − ζM)λ

σM = σ̄Ct/(CWWt)

r = ρ−
u′′(Ct)Ct

u′(Ct)
µ̄− 1

2

u′′′(Ct)C
2
t

u′(Ct)
σ̄2 + λ− (1− (1− eκ)q)

u′(eν̄Ct)

u′(Ct)
λ.

as well as implicitly the portfolio jump-size

C((1− ζM(t))Wt) = exp(ν̄)C(Wt).

Proof. Using the inverse function, we are able to determine the path for consumption

(u′′ 6= 0). From the Euler equation (39), we obtain

dCt =
(
(ρ− µM + λ)u′(Ct)/u

′′(Ct)− σ2
MWtCW − 1

2
u′′′(Ct)/u

′′(Ct)σ
2
MW

2
t C

2
W

−Eζ [u′(C((1− ζM(t))Wt))(1− ζM(t))]λ/u′′(Ct)
)
dt

+σMWtCWdBt + (C((1− ζM(t))Wt−)− C(Wt−))dNt, (B.1)

where we employed the inverse function c = g(u′(c)) which has

g′(u′(c)) = 1/u′′(c), g′′(u′(c)) = −u′′′(c)/(u′′(c))3.

Economically, concave utility (u′(c) > 0, u′′(c) < 0) implies risk aversion, whereas convex

marginal utility, u′′′(c) > 0, implies a positive precautionary saving motive. Accordingly,

−u′′(c)/u′(c) measures absolute risk aversion, whereas −u′′′(c)/u′′(c) measures the degree of

absolute prudence, i.e., the intensity of the precautionary saving motive.

Because output is perishable, using the market clearing condition Yt = Ct = At, and

dCt = µ̄Ctdt+ σ̄CtdBt + (exp(ν̄)− 1)Ct−dNt,

the parameters of price dynamics are pinned down in general equilibrium. In particular, we

obtain Jt implicitly as function of ν̄, Dt, and the curvature of the consumption function,

where C̃(Wt) ≡ C((1 − ζM(t))Wt)/C(Wt) defines optimal consumption jumps. For market

clearing we require the percentage jump in aggregate consumption to match the size of the
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disaster, exp(ν̄) = C̃(Wt), and thus exp(ν̄) = C((1 + (Jt −Dt)wt +Dt)Wt)/C(Wt) implies a

constant jump size. For consumption being linear homogeneous in wealth,

ζM = eν̄ − 1.

Similarly, the market clearing condition pins down σMWtCW = σ̄Ct, and

µM − r = −
u′′(Ct)CWWt

u′(C(Wt))
σ2
M −

u′(eν̄C(Wt))

u′(C(Wt))
((1− eκ)q − ζM) λ.

Inserting our results back into (B.1), we obtain that consumption follows

dCt = (ρ− r + λ)
u′(Ct)

u′′(Ct)
dt− 1

2

u′′′(Ct)

u′′(Ct)
σ2
MW

2
t C

2
Wdt− (1− (1− eκ)q)

u′(eν̄Ct)

u′′(Ct)
λdt

+σMWtCWdBt + (C((1− ζM(t))Wt−)− C(Wt−))dNt.

This in turn determines the return on the riskless asset

r = ρ−
u′′(Ct)Ct

u′(Ct)
µ̄− 1

2

u′′′(Ct)C
2
t

u′(Ct)
σ̄2 + λ− (1− (1− eκ)q)

u′(eν̄Ct)

u′(Ct)
λ.

As a result, the higher the subjective rate of time preference, ρ, the higher is the general

equilibrium interest rate to induce individuals to defer consumption (cf. Breeden, 1986). For

convex marginal utility (decreasing absolute risk aversion), u′′′(c) > 0, a lower conditional

variance of dividend growth, σ̄2, and a higher conditional mean of dividend growth, µ̄, and

a higher default probability, q, decrease the bond price and increases the interest rate.

Proposition B.2 (PDE approach) An alternative characterization of the no-arbitrage

condition is given by the PDE

Et

[
d(mtP

d
t )

mtP d
t

]
+
Ct

P d
t

dt = 0.

Proof. By application of Itô’s formula

d(mtP
d
t ) = (dP d

t − (eν̄ − 1)P d
t−dNt)mt + (dmt − (e−γν̄ − 1)mt−dNt)P

d
t + dmtdP

d
t

+(e(1−γ)ν̄ − 1)mt−P
d
t−dNt

such that

Et

[
d(mtP

d
t )
]

= Et

[
dP d

t

]
mt + Et [dmt]P

d
t + Et

[
dmtdP

d
t

]

+(−(eν̄ − 1)− (e−γν̄ − 1) + (e(1−γ)ν̄ − 1))λP d
t mtdt

and thus the instantaneous return to the asset in (48) is

1

dt
Et

[
dRd

t

]
= rft −

1

dt
Et

[
dmtdP

d
t

mtP d
t

]
− ((e(1−γ)ν̄ − 1)− (eν̄ − 1)− (e−γν̄ − 1))λ
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where we defined dRd
t ≡ (dP d

t )/P
d
t + (At/P

d
t )dt. Inserting the solution in (49) yields

−(r − (1− eκ)e−γν̄qλ+ (e−γν̄ − 1)λ) + (e−γν̄ − 1)λ+ µ̄+ (eν̄ − 1)λ− γσ̄2

+((e(1−γ)ν̄ − 1)− (eν̄ − 1)− (e−γν̄ − 1))λ

+ρ− (1− γ)(µ̄− 1
2
σ̄2)− 1

2
((1− γ)σ̄)2 − (1− e(1−γ)ν̄)λ = 0

and by collecting terms yields back the equilibrium interest rate

r = ρ+ γµ̄− γσ̄2 − (e−γν̄ − 1)λ

+(1− γ)1
2
σ̄2 − 1

2
((1− γ)σ̄)2 + (1− eκ)qe−γν̄λ

= ρ+ γµ̄− 3
2
γσ̄2 + 1

2
σ̄2 − 1

2
(1− 2γ + γ2)σ̄2 + λ− (1− (1− eκ)q)e−γν̄λ

= ρ+ γµ̄− 1
2
γ(1 + γ)σ̄2 + λ− (1− (1− eκ)q)e−γν̄λ

which completes the proof that the PDE approach gives the same price P d
t .

B.2 An alternative mimicking economy with rare events

B.2.1 The underlying production economy

Consider the representative-agent neoclassical production economy in Appendix A.3. The

following propositions show the optimal consumption function, the SDF, and the equilibrium

prices for different asset classes, for the parametric restriction α = γ.

Proposition B.3 (Linear-policy-function) Suppose the production function F (Kt, L) is

Yt = AtK
α
t L

1−α, utility has constant relative risk aversion, i.e., −u′′(Ct)Ct/u
′(Ct) = γ, and

let α = γ (with γ < 1). Then optimal consumption is linear in wealth.

α = γ ⇒ Ct = C(Wt) = kWt, (B.2)

k ≡ (ρ− (e(1−γ)ν − 1)λ+ (1− γ)δ)/γ + 1
2
(1− γ)σ2,

where k denotes the marginal propensity to consume out of (physical) wealth.

Proof. The idea of the proof follows closely that of Proposition A.9. An educated guess of

the value function is

V (Wt, At) =
C1W

1−γ
t

1− γ
+ f(At). (B.3)

From (55), optimal consumption is a constant fraction of wealth,

C−γ
t = C1W

−γ
t ⇔ Ct = C

−1/γ
1 Wt.

4



Now use the maximized Bellman equation (56), the property of the Cobb-Douglas technology,

FK = αAtK
α−1
t L1−α and FL = (1−α)AtK

α
t L

−α
t , together with the transformationKt ≡ LWt,

and insert the solution candidate to obtain

ρ
C1W

1−γ
t

1− γ
=

C
− 1−γ

γ

1 W 1−γ
t

1− γ
+ (αAtW

α−1
t Wt − δWt + (1− α)AtW

α
t − C

−1/γ
1 Wt)C1W

−γ
t

− 1
2
γC1W

1−γ
t σ2 − g(At) + (e(1−γ)ν − 1)

C1W
1−γ
t

1− γ
λ,

where we defined g(At) ≡ ρf(At)−fAµ̄At−
1
2
fAAσ̄

2A2
t − [f(eν̄At)−f(At)]λ̄. When imposing

the condition α = γ and g(At) = C1At it can be simplified to

(ρ− (e(1−γ)ν − 1)λ)
C1W

1−γ
t

1− γ
+ g(At) =

C
− 1−γ

γ

1 W 1−γ
t

1− γ
+ (AtW

α−γ
t − δW 1−γ

t − C
−1/γ
1 W 1−γ

t )C1

−1
2
γC1W

1−γ
t σ2

⇔ (ρ− (e(1−γ)ν − 1)λ)W 1−γ
t = γC

−1/γ
1 W 1−γ

t − (1− γ)δW 1−γ
t − 1

2
γ(1− γ)W 1−γ

t σ2,

which implies that C
−1/γ
1 =

(
ρ− (e(1−γ)ν − 1)λ+ (1− γ)δ + 1

2
γ(1− γ)σ2

)
/γ. This proves

that the guess (B.3) indeed is a solution, and by inserting the guess together with the

constant, we obtain the optimal policy function for consumption.

Proposition B.4 (Rental rate of capital) Suppose the production function F (Kt, L) is

Yt = AtK
α
t L

1−α. The rental rate of capital is obtained from the marginal product of capital,

rt = αAtK
α−1
t , and follows the reducible stochastic differential equation,

drt = c1
(
c2 − rt

)
rtdt+ (α− 1)σrtdZt + σ̄rtdB̄t + (exp((α− 1)ν)− 1)rt−dNt

+(exp(ν̄)− 1)rt−dN̄t (B.4)

in which the constants c1 and c2 for the parametric restriction α = γ are given by

c1 ≡
1−α
α
, c2 ≡ αk + αδ − 1

2
α(α− 2)σ2 − α

α−1
µ̄.

Proof. The idea of the proof is along the lines of Proposition A.10

Proposition B.5 (Stochastic discount factor) Following the assumptions in Proposi-

tion B.3, the stochastic discount factor (SDF) is given by

ms/mt = e−
∫ s

t
(rv−δ)dv+[λ−e(1−γ)νλ+γσ2− 1

2
(γσ)2 ](s−t)−γσ(Zs−Zt)−γν(Ns−Nt). (B.5)

Proof. The idea of the proof is along the lines of Proposition A.11
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Proposition B.6 (Risky bond) Consider a risky asset that pays at the rate rt in t + 1.

The one-period holding return of an asset with the random payoff Xb,t+1 = e
∫ t+1
t

rsds is

Rb
t+1 = exp

(∫ t+1

t

(rv − δ − γσ2 − e−γν(1− eν)λ)dv

)
. (B.6)

Proof. Substitute the random payoff Xb,t+1 in (2) to obtain the equilibrium price of this

risky bond at time t as

P b
t = Et

[
mt+1

mt

e
∫ t+1
t

rsds

]
.

Using the definition of the SDF (B.5) and making use of Lemma (A.1) yields

P b
t = eδ+γσ2+e−γνλ−e(1−γ)νλ.

For any s > t, Rb
s = Xb,s/P

b
t denotes the gross return on the risky bond. The desired result

follows by setting s = t+ 1.

Proposition B.7 (Risky asset) The one-period holding return on an asset that pays one

unit of output Xc,t+1 = At+1K
α
t+1 is

Rc
s = exp

(∫ s

t

(rv − δ − 1
2
σ̄2 − λ+ e(1−γ)νλ− γσ2 + 1

2
(γσ)2 − (eν̄ − 1)λ̄)dv

)

× exp
(
σ̄(B̄s − B̄t) + ασ(Zs − Zt) + αν(Ns −Nt) + ν̄(N̄s − N̄t)

)
. (B.7)

Proof. For any s > t it follows from (62) and (63) that

AsK
α
s = AtK

α
t e

(µ̄− 1
2
σ̄2)(s−t)+

∫ s

t
(rv−αCv/Kv−αδ−α 1

2
σ2)dv+σ̄(Bs−Bt)+ασ(Zs−Zt)+αν(Ns−Nt)+ν̄(N̄s−N̄t).

Set s = t + 1 and substitute the random payoff Xc,t+1 together with the definition of the

SDF (B.5) into (2). Making use of Lemma (A.1) compute the equilibrium price of this risky

asset at time t as

P c
t = Et

[
mt+1

mt

At+1K
α
t+1

]

⇒ P c
t = Et

[
AtK

α
t e

µ̄− 1
2
σ̄2−αk−αδ−α 1

2
σ2+δ+λ−e(1−γ)νλ+γσ2− 1

2
(γσ)2+σ̄(B̄t+1−B̄t)+ν̄(N̄t+1−N̄t)

]

= AtK
α
t e

−(αk+αδ+α 1
2
σ2−δ−λ+e(1−γ)νλ−γσ2+ 1

2
(γσ)2−µ̄−(eν̄−1)λ̄).

For any s > t, Rc
s = Xc,s/P

b
t denotes the gross return on the risky bond. The desired

result follows by setting s = t+ 1.
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B.2.2 Euler equation errors for α = γ

Consider two assets, i.e., the risky bond, Rb
t+1, and the risky claim on output, Rc

t+1. From

the definition of Euler equation errors (3), for any asset i and CRRA preferences

eiR = Et

[
e−

∫
t+1
t

(rs−δ)ds+λ−e(1−γ)νλ+γσ2− 1
2
(γσ)2−γσ(Zt+1−Zt)−γν(Nt+1−Nt)Ri

t+1

]
− 1,

where we inserted the SDFs from (B.5). Inserting the one-period holding equilibrium returns

for the risky bond (B.6) yields

ebR = Et

[
e(1−e−γν )λ− 1

2
(γσ)2−γσ(Zt+1−Zt)−γν(Nt+1−Nt)

]
− 1.

Conditional on no disasters, on average we can rationalize Euler equation errors

ebR|Nt+1−Nt=0 = exp
(
(1− e−γν)λ

)
− 1,

or, conditional on no rare events, on average we can rationalize Euler equation errors

ebR|Nt+1−Nt=N̄t+1−N̄t=0 = exp
(
(1− e−γν)λ

)
− 1.

Similarly, inserting the return on the claims on output (B.7) we obtain

ecR = Et

[
e−

1
2
σ̄2−(eν̄−1)λ̄+σ̄(B̄t+1−B̄t)+ν̄(N̄t+1−N̄t)

]
− 1.

Note that EE errors based on excess returns are obtained from eiX = eiR − ebR for any asset i.

B.2.3 The mimicking endowment economy for α = γ

Technology. Suppose production of perishable output, Yt, is exogenously given: there is no

possibility of affecting the output at any time. Let Yt = αkAtK
α
t /rt = kKt, where Kt is the

aggregate capital stock, and At is stochastic technology or total factor productivity (TFP).

Output is perishable. The law of motion of At is given in (50).

The capital stock is subject to stochastic depreciation,

dKt = (AtK
α
t − (k + δ)Kt)dt+ σKtdZt + (exp(ν)− 1)Kt−dNt, , (B.8)

in which Zt is a standard Brownian motion (uncorrelated with B̄t), and Nt is a Poisson

process with constant arrival rate λ.

Thus, in the mimicking endowment economy with α = ρ, output follows

dYt = k(AtK
α
t − (k + δ)Kt)dt+ σkKtdZt + (exp(ν)− 1)kKt−dNt

= (AtK
α−1
t − (k + δ))Ytdt+ σYtdZt + (exp(ν)− 1)Yt−dNt

= (rt/α− (k + δ))Ytdt+ σYtdZt + (exp(ν)− 1)Yt−dNt

≡ µtYtdt+ σtYtdZt + (Yt − Yt−)dNt
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with µt = rt/α− (k + δ), σt ≡ σ and rt = αAtK
α−1
t , such that

drt = c1
(
c2 − rt

)
rtdt+ (α− 1)σrtdZt + σ̄rtdB̄t + (exp((α− 1)ν)− 1)rt−dNt

+(exp(ν̄)− 1)rt−dN̄t (B.9)

in which c1 ≡
1−α
α

, and c2 ≡ αk + αδ − 1
2
α(α− 2)σ2 − α

α−1
µ̄.

Preferences. The representative consumer maximizes expected discounted lifetime utility

given in (8) and (9). Further assume that 1/ψ = γ such that the problem is reduced to the

standard power utility case in (10).

Equilibrium. In this economy, it is easy to determine equilibrium quantities and the

equilibrium asset holdings. The economy is closed and all output will be consumed, Ct = Yt,

and households own the physical capital. All other assets are zero in net supply.
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B.3 Tables and Figures

Table B.1: Robustness: Simulation study (endowment economy)

(1) (2) (3) (4)

ρ rate of time preference 0.03 0.03 0.03 0.03

γ coef. of relative risk aversion 0.5 4 4 4

µ̄ consumption growth 0.01 0.01 0.01 0.01

σ̄ consumption noise 0.005 0.005 0.005 0.005

−ν̄ size of consumption disaster 0.4 0.4 0.4 0

λ consumption disaster probability 0.017 0.017 0.017 0

−κ size of government default 0 0 0.3 0

q default probability 0 0 0.5 0

Table B.2: Robustness: Simulation study (production economy)

(1) (2) (3) (4)

ρ rate of time preference 0.03 0.024 0.016 0.03
γ coef. of relative risk aversion 0.5 4 4 4
α output elasticity of capital 0.5 0.6 0.6 0.6
δ capital depreciation 0.025 0.025 0.025 0.05
µ̄ productivity growth 0.02 0.01 0.01 0.01
σ̄ productivity noise 0.01 0.01 0.01 0.01

−ν̄ size of productivity slump 0.01 0.01 0 0
λ̄ productivity jump probability 0.2 0.2 0 0
σ capital stochastic depreciation 0.005 0.005 0.005 0.005

−ν size of capital disaster 0.55 0.55 0.55 0
λ capital disaster probability 0.017 0.017 0.017 0

Table B.3: Robustness: Simulation study (long-run risk model)

(1) (2) (3) (4)

ρ rate of time preference 0.024 0.024 0.03 0.02
γ coef. of relative risk aversion 10 7.5 10 30
ψ EIS 1.5 1.5 1.5 1.5
µ̄ consumption growth 0.018 0.018 0.018 0.018
κµ LRR persistence 0.256 0.256 0.3 0.256
νµ LRR volatility multiple 0.528 0.528 0.456 0.456
ϑ̄ baseline volatility (×100) 0.0729 0.0729 0.0625 0.0625
κϑ persistence volatility 0.156 0.156 0.015 0.156
νϑ vol-of-vol 0.0035 0.0035 0.0027 0.0027
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Figure B.1: General equilibrium asset returns
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Notes: This figure illustrates the equilibrium asset returns and shows one realization of the return to the bonds and the risky
assets in the simple endowment economy (upper two panels, parameterization (2) in Table B.1) and the endowment economy
mimicking a production economy (lower two panels, parameterization (2) in Table B.2), respectively.
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Table B.4: C-CAPM simulation results (endowment economy)

The table reports the simulated Euler equation (EE) errors and RMSE (both annualized) for the standard
C-CAPM observed at quarterly frequency in the endowment economy with rare events (cf. Section 3.1) for a
parameterization as in column (3) in Table B.1; the bond return, the equity return, the equity premium and
consumption growth (all annualized); and the GMM estimates of φ = (β, γ)⊤ with β = 0.97 and γ = 4 based
on moments (15), and the estimated EE errors and RMSE (both annualized). Simulated data is generated
using 5,000 Monte Carlo sample paths, each of length 50 years.

Results analytical solution unconditional
parameterization (3) Mean Std. dev. Mode Median

ebR EE error risky bond 0.09 6.61 −5.55 −0.14
ecX EE error excess return −0.12 2.59 1.68 0.72

RMSE root mean square error 3.86 3.20 4.05 3.98

Observed random variables

Rb
t+1 bill return 1.16 0.36 1.35 1.35

Rc
t+1 equity return 2.49 0.62 3.04 2.45

Rc
t+1 −Rb

t+1 equity premium 1.34 0.50 1.68 1.52
ln(Ct+1/Ct) consumption growth 0.33 0.75 0.98 0.27

Parameter estimates

β̂ factor of time preference 1.07 0.14 0.98 0.99
γ̂ coef. of relative risk aversion 356.98 434.27 5.00 5.40

êbR EE error risky bond 0.00 0.00 0.00 0.00

êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00

D
e
n
s
it
y

0.0 0.5 1.0 1.5

0
2

4
6

8
1
2

Estimated beta

D
e
n
s
it
y

0.0e+00 5.0e−09 1.0e−08 1.5e−08

0
e
+

0
0

6
e
+

0
8

Annualized RMSE fitted (%)

D
e
n
s
it
y

−1 0 1 2

0
.0

0
.5

1
.0

1
.5

2
.0

Annualized equity premium (%)

D
e
n
s
it
y

0 1000 2000 3000 4000 5000 6000

0
.0

0
0

0
.0

0
2

Estimated gamma

D
e
n
s
it
y

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

Annualized true RMSE (%)

D
e
n
s
it
y

−3 −2 −1 0 1

0
.0

0
.5

1
.0

1
.5

Annualized consumption growth (%)

11



Table B.5: C-CAPM simulation results (production economy)

The table reports the simulated Euler equation (EE) errors and RMSE (both annualized) for the standard
C-CAPM observed at quarterly frequency in the production economy with rare events (cf. Section 3.2) for a
parameterization as in column (2) in Table B.2; the bond return, the equity return, the equity premium and
consumption growth (all annualized); and the GMM estimates of φ = (β, γ)⊤ with β = 0.98 and γ = 4 based
on moments (15), and the estimated EE errors and RMSE (both annualized). Simulated data is generated
using 5,000 Monte Carlo sample paths, each of length 50 years.

Results constant-saving-function, unconditional
parameterization (2) Mean Std. dev. Mode Median

ebR EE error risky bond 0.61 4.73 0.75 0.63
ecX EE error excess return −0.60 4.70 −0.75 −0.74

RMSE root mean square error 3.69 3.00 0.68 4.36

Observed random variables

Rb
t+1 bill return (gross) 7.40 1.10 6.39 7.21

Rc
t+1 equity return (gross) 10.74 0.77 10.82 10.86

Rc
t+1 −Rb

t+1 equity premium 3.34 1.27 3.32 3.31
ln(Ct+1/Ct) consumption growth 1.80 0.43 1.71 1.84

Parameter estimates

β̂ factor of time preference 0.93 0.37 0.99 0.99
γ̂ coef. of relative risk aversion 152.20 314.21 2.50 3.55

êbR EE error risky bond −0.01 0.02 0.00 0.00

êcX EE excess return 1.14 1.78 0.00 0.00

R̂MSE root mean square error 0.81 1.26 0.00 0.00
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Table B.6: C-CAPM simulation results (production economy)

The table reports the simulated Euler equation (EE) errors and RMSE (both annualized) for the standard
C-CAPM observed at quarterly frequency in the production economy with rare events (cf. Section 3.2) for a
parameterization as in column (3) in Table B.2; the bond return, the equity return, the equity premium and
consumption growth (all annualized); and the GMM estimates of φ = (β, γ)⊤ with β = 0.98 and γ = 4 based
on moments (15), and the estimated EE errors and RMSE (both annualized). Simulated data is generated
using 5,000 Monte Carlo sample paths, each of length 50 years.

Results constant-saving-function, unconditional
parameterization (3) Mean Std. dev. Mode Median

ebR EE error risky bond 1.00 5.23 1.05 0.76
ecX EE error excess return −0.87 5.21 −0.87 −0.73

RMSE root mean square error 3.97 3.52 0.68 4.32

Observed random variables

Rb
t+1 bill return (gross) 7.93 1.25 7.01 7.69

Rc
t+1 equity return (gross) 11.20 0.78 11.66 11.34

Rc
t+1 −Rb

t+1 equity premium 3.27 1.44 3.27 3.33
ln(Ct+1/Ct) consumption growth 2.10 0.45 2.42 2.15

Parameter estimates

β̂ factor of time preference 0.94 0.50 1.00 0.99
γ̂ coef. of relative risk aversion 267.66 520.80 5.00 3.56

êbR EE error risky bond −0.01 0.01 0.00 0.00

êcX EE excess return 0.95 1.57 0.00 0.00

R̂MSE root mean square error 0.67 1.11 0.00 0.00
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Table B.7: C-CAPM simulation results (long-run risk model)

The table reports the simulated Euler equation (EE) errors and RMSE∗ (both annualized) for the standard
C-CAPM observed at quarterly frequency in the endowment economy with long-run risk (cf. Appendix A.4)
for a parameterization as in column (2) in Table B.3; the bond return, the equity return, the equity premium
and consumption growth (all annualized); and the GMM estimates of φ = (β, γ)⊤ with β = 0.98 and γ = 7.5
based on moments (15), and the estimated EE errors and RMSE (both annualized). Simulated data is
generated using 5,000 Monte Carlo sample paths, each of length 50 years.

Results approximate solution unconditional
parameterization (2) Mean Std. dev. Mode Median

Rb
t+1 − E(Rb

t+1) pricing error bond 0.00 0.50 −0.09 0.00
Rd

t+1 − E(Rd
t+1) pricing error risky asset 0.00 0.84 0.16 −0.01

RMSE∗ root mean square error 0.61 0.44 0.27 0.51

Observed random variables

Rb
t+1 bill return 2.85 0.51 2.77 2.85

Rd
t+1 equity return 4.02 0.85 3.98 4.01

Rd
t+1 −Rb

t+1 equity premium 1.17 0.47 1.08 1.17
ln(Ct+1/Ct) consumption growth 1.76 0.85 1.65 1.76

Parameter estimates

β̂ factor of time preference 1.05 0.05 0.99 1.04
γ̂ coef. of relative risk aversion 16.03 6.67 14.05 15.78

êbR EE error risky bond 0.00 0.00 0.00 0.00

êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00
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Table B.8: C-CAPM simulation results (long-run risk model)

The table reports the simulated Euler equation (EE) errors and RMSE∗ (both annualized) for the standard
C-CAPM observed at quarterly frequency in the endowment economy with long-run risk (cf. Appendix A.4)
for a parameterization as in column (4) in Table B.3; the bond return, the equity return, the equity premium
and consumption growth (all annualized); and the GMM estimates of φ = (β, γ)⊤ with β = 0.98 and γ = 30
based on moments (15), and the estimated EE errors and RMSE (both annualized). Simulated data is
generated using 5,000 Monte Carlo sample paths, each of length 50 years.

Results approximate solution unconditional
parameterization (4) Mean Std. dev. Mode Median

Rb
t+1 − E(Rb

t+1) pricing error bond 0.00 0.46 0.22 0.01
Rd

t+1 − E(Rd
t+1) pricing error risky asset 0.00 0.70 −0.14 −0.01

RMSE∗ root mean square error 0.53 0.35 0.24 0.45

Observed random variables

Rb
t+1 bill return 0.57 0.46 0.80 0.58

Rd
t+1 equity return 4.62 0.70 4.49 4.61

Rd
t+1 −Rb

t+1 equity premium 4.05 0.48 4.07 4.04
ln(Ct+1/Ct) consumption growth 1.77 0.70 1.71 1.76

Parameter estimates

β̂ factor of time preference 0.94 0.09 0.92 0.94
γ̂ coef. of relative risk aversion 66.42 12.49 65.50 65.09

êbR EE error risky bond 0.00 0.00 0.00 0.00

êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00
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