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Abstract A model of growth with endogenous innovation and distortionary taxes is pre-
sented. Since innovation is the only source of volatility, any variable that influences innovation
directly affects volatility and growth. This joint endogeneity is illustrated by working out the
effects through which economies with different tax levels differ in their volatility and growth
process. We obtain analytical measures of macro volatility based on cyclical output and on
output growth rates for plausible parametric restrictions. This analysis implies that controls
for taxes should be included in the standard growth-volatility regressions. Our estimates show
that the conventional Ramey–Ramey coefficient is affected sizeably. In addition, tax levels
do indeed appear to affect volatility in our empirical application.
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1 Introduction

1.1 Background

In a seminal paper, Ramey and Ramey (1995) find a strong empirical negative link
between volatility and growth. Subsequent papers confirm this relationship for other datasets
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(Martin and Rogers 1997; Acemoglu et al. 2003; Aghion et al. 2010; Posch 2011a).1 Com-
plementary to Ramey and Ramey , these studies use additional controls such as exchange
rate variability, financial development and measures of openness, institutions or monetary
and fiscal policy.

1.2 The open question

The previous studies are primarily of an empirical nature. These papers do not, however,
inquire into the exact structural channels through which macro volatility and growth inter-
act. It therefore largely remains an open question what the determinants of the link between
volatility and growth are.

1.3 Our message

This paper plays the devil’s advocate and argues that, theoretically, any correlation pattern can
emerge. The sign of the growth-volatility correlation depends—inter alia—on time-invariant
economic policies of a country. We show that a link between volatility and growth may arise
from endogenous innovations and their propagation. Volatility is endogenous for measures
based on cyclical output and for measures based on output growth rates. Growth emerges
endogenously from innovations of a research sector. In our theoretical framework the level
of taxes jointly affects growth and volatility and thereby their link.

1.4 Our framework

Our analysis builds on dynamic stochastic equilibrium models in which cyclical growth
emerges endogenously (Bental and Peled 1996; Matsuyama 1999; Francois and Lloyd-Ellis
2003, 2008; Wälde 2002, 2005).2 We use a version of Wälde (2005), because it has analytical
solutions for plausible parametric restrictions for non-trivial dynamics and comprises the
continuous-time real business cycle (RBC) model as a special case.

Using a well-known parametric restriction, we obtain two types of analytical volatility
measures (borrowing extensively from García and Griego 1994). The first type is based on
stochastically detrended (henceforth cyclical) variables. The second type is based on growth
rates of the original (non-stationary) series. While the first one is identical in spirit to empir-
ical decompositions, where a time series is split into a growth trend and a stationary cyclical
component, the second one is the common measure in the empirical literature.

1.5 Results

We illustrate how structural parameters affect our measures of volatility and growth directly
by changing the variance and intensity of the shocks, and indirectly by affecting the shock
propagation. In our model, we focus on taxes as an example for economic policy parameters.
Any correlation between volatility and growth can be predicted if the growth and volatility

1 There is work suggesting that the link is not as pronounced when using time series evidence (Beaumont et al.
2008). At different levels of aggregation either no significant relationship is found using state data (Dawson
and Stephenson 1997), or an ambiguous empirical result—either a positive or negative link—is found at the
sectoral level (Imbs 2007; Chong and Gradstein 2009).
2 These papers in turn build on Aghion and Howitt (1992), Grossman and Helpman (1991) and Segerstrom
et al. (1990). The present paper builds explicitly on the stochastic Aghion and Howitt model using the formu-
lation for risk averse agents introduced by Wälde (1999).
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measures in our model economy are considered for different tax levels. The volatility-growth
link can even change sign if tax rates are altered.

We identify three channels through which macro volatility can be affected by policy
parameters, i.e., the speed of convergence (to the non-stochastic steady state), the jump size
and the arrival rate.

For empirical studies of the Ramey–Ramey type, the inclusion of control variables in the
conditional variance equation is suggested. By including such controls, we find that 3 out of
the 4 controls we suggest are significant at the 5% level. We also find that the conventional
Ramey–Ramey coefficient which links volatility and growth is affected sizably.

1.6 Further related literature

Our theoretical and empirical results are complementary to the finding that volatility can have
detrimental effects on growth (Chong and Gradstein 2009). The authors provide empirical
evidence that unexpected changes in economic and fiscal policies is a channel through which
the link between volatility and growth could materialize at the macro level. We show that
even with constant policies the link materializes through the joint endogeneity. Jaimovic and
Siu (2009) also provide evidence for controlling for additional variables in Ramey–Ramey
regressions. While they do stress the effect of the age composition of the labor force on vola-
tility, they do not estimate the link between volatility and growth. Aghion et al. (2010) argue
that tighter credit constraints can lead to both lower and more volatile growth rates. While
this is complementary to our channel, they do not study the implications for the conventional
Ramey–Ramey coefficient.

1.7 Table of contents

The paper proceeds as follows. Section 2 introduces the model of endogenous innovation and
distortionary taxes. Section 3 presents the equilibrium dynamics and illustrates the notion of
cyclical growth. Section 4 contains our theoretical contribution, the derivation of closed-form
volatility measures. Section 5 comprises our main economic insights and Sect. 6 provides
our empirical results. The final section concludes.

2 The model

2.1 Production possibilities

Technological progress is labor augmenting and embodied in capital. All capital goods can
be identified by a number denoting their date of manufacture and therefore their vintage.
A capital good K j of vintage j allows workers to produce with labor productivity A j , where
A > 1 is a constant parameter. Hence, a more modern vintage j + 1 implies a labor produc-
tivity that is A times higher than that of vintage j . The corresponding production function
reads Y j = K α

j (A j L j )
1−α, where the amount of labor allocated to that vintage is L j and

0 < α < 1 denotes the output elasticity of capital.
There is a very large number of research firms which operate under perfect competition.

Research costs are recovered by returns of a prototype which is the outcome of a successful
project. This differs from standard modeling of R&D where successful research only leads to
a blueprint. The prototype is a production unit—a machine—of size κt . This new prototype
is owned by the individuals who financed the successful R&D project (as reflected in the
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budget constraint below). The currently most advanced vintage is denoted by q and implies a
labor productivity of Aq .3 The new prototype yields a labor productivity of Aq+1 for workers
having access to this new technology.

Research is a risky activity. Uncertainty in research is captured by a Poisson process qt

where the arrival rate of success is denoted by λt . Resources employed for research are
denoted by Rt . An exogenous function Dt captures the difficulty to make an invention (as in
Segerstrom 1998). This function captures the idea that an economy needs to put more effort
into research for the next generation of capital goods if new technologies are to appear at
a constant rate. There are constant returns to scale at the firm level. On the sectorial level,
however, an externality h (·) implies decreasing returns to scale,

λt = (Rt/Dt )h (Rt/Dt ) ≡ (Rt/Dt )
1−γ , 0 < γ < 1, (1)

where the difficulty function Dt and the externality h (·) are taken as given by the firm.4

Given this research process, the capital stock of the next vintage follows

d Kq+1 = κt dqt , (2)

which is a simple stochastic differential equation (SDE). The increment dqt of the Poisson
process qt can either be 0 or 1. As successful research means dqt = 1, this equation states that
the capital stock increases from 0 to κt in the good outcome. When research is not successful,
d Kq+1 = 0 because dqt = 0.

Capital accumulation of existing vintages 1 to q is riskless. When resources are used to
accumulate existing capital, the capital stock of vintage j increases if investment in vintage
j exceeds depreciation δ,

d K j = (
I j − δK j

)
dt, j ≤ q. (3)

Given that value marginal productivity is highest for the most advanced vintage, investment
only takes place in vintage q . As R&D takes place under perfect competition, there is no
monopolist owning the new vintage and there is no patent protection. Thus, we observe
I j = 0∀ j < q , and Iq = It for the most advanced vintage. As soon as a new capital good is
discovered through R&D, it is replicated by a large number of competing firms. In contrast to
R&D, this is a deterministic process because capital accumulation simply means replicating
existing machines. The process of capital accumulation is also—as in the standard Solow
growth model—perfectly competitive.

Before we continue with the description of the model, we present a few equilibrium prop-
erties, some of them related to the vintage capital structure used here. They are useful as
they simplify the presentation of the government, preferences and the assumptions about the
difficulty function as well as the size of the prototype. Each vintage of capital allows a single
output good to be produced, which is used for producing consumption goods, Ct , investment
goods, It , as an input for research, Rt , and for government expenditures, Gt ,

q∑

j=0
Y j = Yt = Ct + It + Rt + Gt , (4)

3 More precisely, qt denotes the Poisson process whereas q denotes the label of the most recent vintage
(number of jumps up to time t). Though in principle interchangeable, after successful research, qt increases
by 1 while the label of older vintages remains like a stamp on the capital goods.
4 Remember that arrival rates of Poisson processes can be added. Economically speaking, this means that there

are many “small” arrival rates λ
f
t = (R f

t /Dt )h (Rt /Dt ) where R f
t stands for R&D investment in research

firm f. Aggregating over all research firms leads to the economy wide arrival rate λt .

123



J Econ Growth (2011) 16:285–308 289

where the quantities denote net resources used for these activities, i.e., after taxation. All
activities in the economy take place under perfect competition. Hence, the producer price
of the production good, the consumption good, and both investment goods used for capital
accumulation and research will therefore be identical,

pY
t = pC

t = pK
t = pR

t . (5)

Aggregate constant labor supply in this economy is L . Allowing labor to be mobile across
all vintages such that wage rates equalize and assuming market clearing,

∑q
j=0 L j = L , total

output of the economy can be represented by a simple Cobb-Douglas production function,

Yt = K α
t L1−α, (6)

in which vintage-specific capital has been combined to an aggregate capital index Kt ,

Kt = K0 + BK1 + · · · + Bq Kq =
q∑

j=0
B j K j , B ≡ A

1−α
α . (7)

This index can be thought of as counting the ‘number of machines’ of the first vintage, j = 0,
that would be required to produce the same output Yt as with the current mix of vintages.

Applying Itô’s formula (or change of variable formula, cf. Sennewald (2007) for a rigor-
ous analysis and Sennewald and Wälde (2006) for an introduction) to (7) using (2) and ( 3),
the capital index Kt follows the SDE,

d Kt = (
Bq It − δKt

)
dt + Bq+1κt dqt . (8)

Because the capital index, Kt , is measured in units of the first vintage, it increases as a func-
tion of effective investment, Bq It , minus depreciation, δKt . When an innovation occurs, the
capital index increases by the effective size of the new prototype, Bq+1κt .

2.2 Government

The government levies taxes on income, τi , on wealth, τa , on consumption expenditures, τc,
on investment expenditures, τk , and on research expenditures, τr . In our study, a positive tax
either implies a real decrease in income or an increase in the effective price (consumer price),
whereas a negative tax denotes a subsidy. The government uses all tax income (and does not
save or run a debt) to provide basic government services Gt ,

Gt = τi (Yt − δB−q Kt ) + τk(It − δB−q Kt ) + τr Rt + τcCt + τa (1 + τk) B−q Kt ≥ 0.

(9)

In order to focus on the effects of taxation from government expenditures, we assume that
government expenditure does not affect household utility or the production possibilities of the
economy. A myopic government simply provides basic government services without having
any interest in stabilization policy or optimal taxation. The tax structure thus is exogenously
given to the model. Additional effects through the channel of fiscal debt might be interesting
but beyond the scope of this paper.

Producer prices from (5) are identical for all three production processes. When goods
are sold, they are taxed differently such that consumer prices are (1 + τc) pC

t , (1 + τk) pK
t ,

(1 + τr ) pR
t , respectively. To rule out arbitrage between different types of goods, we assume

that a unit of production is useless for other purposes once it is assigned for a special purpose:
once a consumption good is acquired, it cannot be used for, e.g., capital accumulation.

123



290 J Econ Growth (2011) 16:285–308

Sales taxes have no theoretical upper bound. A 300% tax on the consumption good would
imply that 3/4 of the price are taxes going to the government and 1/4 goes to the producer.
Their lower bound is clearly −100%, when the good would be gratis. Similarly, the upper
bound for taxes on income is 100% (instant confiscation of income), while there is no lower
bound. Hence, we obtain −1 < τc, τk, τr and τi , τa < 1.

2.3 Preferences

The economy has a large number of representative households. Households maximize
expected utility given by the integral over instantaneous utility, u = u(ct ), resulting from
consumption flows, ct , and discounted at the subjective rate of time preference, ρ,

U0 = E0

∞∫

0

e−ρt u(ct )dt. (10)

We assume that instantaneous utility is characterized by constant relative risk aversion,

u (ct ) = c1−σ
t

1 − σ
, σ > 0. (11)

The budget constraint reflects investment possibilities in this economy, the impact of taxes
and shows how real wealth, at , evolves over time. Households can invest in a risky asset by
financing research, it , and in an (instantaneously) riskless asset by replicating capital. We
measure wealth in units of the consumption good, priced at consumer prices. The household’s
budget constraint can best be illustrated by looking at

dat =
(

1 − τi

1 + τc

q+1∑

j=0
wK

j k j + 1 − τi

1 + τc
wt − ct − 1 + τr

1 + τc
it

)
dt −

(
1 − τi

1 + τk
δ + τa

)
at dt

+
(

1 + τk

1 + τc
κt

it

Rt
− B − 1

B
at−

)
dqt , (12)

where at− ≡ lims→t as, s < t , denotes individual wealth an instant before a jump in t . The
first sum in (12),

∑q+1
j=0 wK

j k j , captures capital income from all vintages. This is taxed at the
income tax rate τi and divided by the after-tax price of the consumption good, 1+τc (keeping in
mind that the consumption good is the numeraire). Hence, the entire term 1−τi

1+τc

∑q+1
j=0 wK

j k j

captures after-tax capital income in units of the consumption good. The same reasoning
applies to labor income wt , consumption expenditures ct , and investment into research it .
Thus, the first bracket captures the increase in wealth at measured in units of the consumption
good at after-tax consumer prices. The second term captures the deterministic wealth-reduc-
ing effect due to depreciation and the tax on wealth, where the tax rates in front of the
depreciation rate ensure that only net capital rewards (after depreciation) are taxed. The third
term is a stochastic component which increases the individual’s wealth in case of successful
research by the ‘dividend payments’ less ‘economic depreciation’. Here, ‘dividend payments’
at the household level are given by the share it/Rt of a successful research project financed
by the household times total payoffs determined by the size κt of the prototype times its value
in units of the consumption good, i.e., 1+τk

1+τc
. The term 1 + τk points out that a successful

research project yields an installed capital good (and not an investment good). Moreover,
‘economic depreciation’ of s ≡ B−1

B > 0 percent emerges from the vintage capital structure
as the most advanced vintage from (5) has a relative price of unity and all other vintages lose
in value relative to the consumption good.
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After some algebra, the budget constraint can be written as follows (cf. app. A.2),5

dat =
((

1 − τi

1 + τk
(rt − δ) − τa

)
at + 1 − τi

1 + τc
wt − ct − 1 + τr

1 + τc
it

)
dt

+
(

1 + τk

1 + τc
κt

it

Rt
− sat−

)
dqt , (13)

where factor rewards

rt = Bq ∂Yt

∂Kt
≡ Bq YK , wt = ∂Yt

∂L
≡ YL , (14)

are defined by the rental rate of capital and the wage rate respectively.

2.4 Assumptions

For the problem to be well defined, we need assumptions on the functional forms of the
‘difficulty function’ as well as on the ‘size’ of the new prototype. We capture the innovations
of the past by the current (tax-independent) size of total wealth, K obs

t = Lat ,

Dt ≡ D
1 + τc

1 + τk
K obs

t = DB−q Kt , D > 0. (15)

Measuring wealth in consumer prices, the price of the capital good increases by the tax τk

and the price to be paid for one unit of the consumption good increases by τc. Through these
channels taxes directly affect individual’s real wealth, however, it seems plausible that taxes
do not directly affect the difficulty level.

The size of the prototype is argued to increase in the amount of time and resources Rt

spent on developing κt . Longer research could imply a larger prototype. We capture these
aspects in a simple and tractable way by keeping κt proportional to the (tax-independent)
size of total wealth an instant before a jump, K obs

t− = Lat−,

κt ≡ κ
1 + τc

1 + τk
K obs

t− = κ B−q Kt−, 0 < κ � 1. (16)

While it may be debatable whether or not the payoffs of the risky research project, as a kind
of income, could be subject to taxation, it seems a plausible assumption that the payoff itself,
that is the size of the prototype, does not directly depend on tax rates.

3 Equilibrium dynamics

Solving the model requires conditions for optimal consumption and research expenditure.
These two conditions, together with the capital accumulation constraint (8), market clearing,
and optimality conditions of competitive firms provide a system consisting of six equations
that determines the time paths of variables of interest Kt , Ct , Rt , Yt , wt and rt .

This type of system can best be understood by introducing auxiliary variables: In the
classical Solow growth model, capital per effective worker (or efficiency unit) is shown to
converge to a non-stochastic steady state and transitional dynamics can be separated from
the analysis of long-run growth. In the present context, we define K̂t and Ĉt as

K̂t ≡ Kt/Aq/α = B−qt Kt/Aq
t , Ĉt ≡ Ct/Aq , (17)

5 All references starting with characters refer to the web appendix of this paper available from the authors.
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which is almost identical to capital and consumption per effective worker as labor supply is
constant here. These variables allow us to separate the analysis of cyclical properties of the
model from long-run growth. In what follows, we denote K̂t and Ĉt as ‘cyclical components’
of Kt and Ct since Aq/α and Aq turn out to be the stochastic trends for the capital index in units
of vintage 0 and in units of the most recent vintage q , respectively. All variables expressed
in units of the consumption good (including the capital stock in units of the most recent
vintage) share the same trend, Aq , as from (17). Thus dividing non-stationary variables such
as Yt , Ct , Rt , It , wt and Gt by the common stochastic trend Aq , these ‘cyclical variables’
turn out to be stationary and within a bounded range (rt is stationary by construction).

3.1 An explicit solution

It would be interesting to analyze such a system in all generality. However, one would run
the risk of losing the big picture and instead be overwhelmed by many small results. As the
main objective of this paper is closed-form measures of volatility, we restrict ourselves to a
particular parameter set of the model that allows very sharp analytical results.

Theorem 1 If relative risk aversion equals the output elasticity of the capital stock, σ = α,
we obtain an equilibrium with optimal policy functions

Ĉt = � K̂t , R̂t = � K̂t , (18)

where we define constants

� ≡ 1 + τk

1 + τc

(
1 − σ

σ

(
1 − τi

1 + τk
δ + τa

)
+ ρ + λ − (1 − s) λξ−σ

σ
− 1 + τr

1 + τk
λ1−γ D

)
, (19)

� ≡ λ1−γ D, (20)

ξ ≡ 1 + κ − s, (21)

and the arrival rate becomes

λ =
(

1 + τk

1 + τr

κ

D
ξ−σ

) 1−γ
γ

. (22)

Proof see app. B.3 	


Suppose the technological improvement (or economic depreciation s) of an innovation is
sufficiently large relative to the size of the new prototype κ � 1 such that ξ ≤ 1, or κ ≤ s.
Intuitively this assumption ensures that cyclical variables are accumulated and not reduced
over the cycle which seems the only empirically plausible assumption (cf. Wälde 2005). It
follows from (13) and (16) that wealth, at/at−, and thus consumption, Ct/Ct− or research
Rt/Rt− jump by the factor ξ or equivalently by κ − s percent, whereas output Yt/Yt− from
(6), (8), and (16) increases by (1 + Bκ)α immediately after successful research.

The parametric restriction σ = α implies a relatively high intertemporal elasticity of
substitution above unity (or risk aversion below unity). While there is supporting empirical
evidence (as in Vissing-Jørgensen 2002; Gruber 2006), our fundamental insights about the
presence of tax effects on volatility, as well as the channels through which taxes affect vol-
atility, will not depend on this restriction. Further, it has proven very useful in the macro
literature to study equilibrium dynamics (e.g. Chang 1988; Xie 1991, 1994; Boucekkine and
Tamarit 2004; Smith 2007; Posch 2009b).
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Fig. 1 Dynamics of cyclical capital and growth cycles: This figure illustrates equilibrium dynamics of cyclical
capital stock (intensive form) (left panel), and the resulting endogenous growth cycles for output (right panel),
where jumps occur at t1 and t2, each starting a new growth cycle

3.2 Cyclical growth

Exploiting the implications of Theorem 1, we can obtain the general-equilibrium behavior of
agents in a way as simple as in the deterministic Solow growth model with a constant saving
rate, even though we have forward-looking agents and an uncertain environment.

In terms of cyclical components, using Itô’s formula (change of variables) together with
capital accumulation in (8), the market clearing condition in (4) and the detrending rule (17),
our capital index follows (cf. app. B.3)

d K̂t = (
Ŷt − Ĉt − R̂t − Ĝt − δ K̂t

)
dt + (

A−1ξ − 1
)

K̂t−dqt .

Inserting optimal consumption and research expenditure from (18 ) of Theorem 1, as well as
government revenues using Ĝt = A−q Gt and government revenues yields

d K̂t =
(

1−τi

1+τk
Ŷt −

(
1+τc

1+τk
�+ 1+τr

1+τk
�+ 1 − τi

1+τk
δ+τa

)
K̂t

)
dt + (

A−1ξ − 1
)

K̂t−dqt

≡ (
θ0 K̂ α

t − θ1 K̂t
)
dt − θ2 K̂t−dqt , (23)

where we inserted Ŷt = A−q Yt = K̂ α
t L1−α from (6) and defined parameters

θ0 ≡ 1 − τi

1 + τk
L1−α, θ1 ≡ 1

σ

(
ρ + λ − (1 − s) λξ−σ + 1 − τi

1 + τk
δ + τa

)
, θ2 ≡ 1 − A−1ξ.

As a result, similar to Solow’s growth model our model implies a one-dimensional SDE with
non-linear drift in (23), but satisfying utility-maximizing behavior of agents for α = σ . Note
that θ1 is obtained when inserting � and � from ( 19) and (20) respectively.

The terms in (23) containing parameters θ0 through θ2 have an economic interpretation:
θ0 K̂ α

t represents cyclical output of this economy reduced by taxation, θ1 K̂t denotes effec-
tive resource allocation to research, private and government consumption, as well as physical
depreciation. As from (23), the term θ1−αθ0 K̂ α−1

t denotes the speed of convergence towards

the non-stochastic steady state, K̂ ∗ = (θ0/θ1)
1

1−α . When an innovation occurs, the parameter
θ2 denotes the size of the jump in the cyclical capital index. For illustration, Fig. 1 plots K̂t

against the deterministic part of cyclical capital (left panel). Note that the non-linear deter-
ministic part in equation (23) implies that the speed of convergence (the slope in Fig. 1)
depends on the level of K̂t , thus changes as K̂t moves towards (1 − α)θ1.
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We can now start our analysis as in the neoclassical growth model. Suppose K̂0 is the
initial capital stock, 0 < K̂0 < K̂ ∗. 6 Households optimally allocate their savings to either
research or capital accumulation. Assuming a certain length of time without jumps, i.e., with-
out successful innovation, the economy grows due to capital accumulation and converges to
the non-stochastic steady state, K̂ ∗. As in the Solow model, growth rates are initially high
and approach zero. Once a jump occurs, qt = qt− + 1, the capital stock of the new vintage
q + 1 increases by κt as in (2). This leads to a discrete increase of the capital index by the
effective size, Bq+1κt . Although the capital stock increases by the size of the new prototype,
our assumption about κ being sufficiently small ensures ξ ≤ 1 in ( 21), and cyclical capital K̂t

unambiguously decreases because the frontier technology shifts outwards (cf. Fig. 1). Due to
higher marginal products, capital accumulation becomes more profitable, growth rates jump
to a higher level approaching zero again until the next innovation occurs.

The discrete increases of labor productivity by A imply a step function in vintage-specific
total factor productivity (TFP), in contrast to the smooth evolution in traditional balanced
growth models à la Romer (1990). As a result, output in this economy is growing through
cycles as illustrated in Fig. 1 and fluctuations are a natural phenomenon in a growing economy.
However, this step function of vintage-specific TFP does not imply that there are discrete
jumps in aggregate TFP. As we show in (6), vintages of capital goods can easily be aggregated
to an index (7) which weights them such that prices fully reflect differences in productivity
and the aggregate TFP is constant and equal to unity.

4 Volatility measures

Volatility can be measured in many ways. The empirical literature focuses on either the stan-
dard deviation of detrended variables or output growth rates. In this study, we derive and
employ three closed-form measures for volatility. Our first two measures are based on the
cyclical component of output and the second one is based on output growth rates.

4.1 Cyclical component

There are many techniques to obtain stationary variables. Given their complexity, virtually
none of these filters allow us to derive tractable cyclical variables which imply closed-form
measures of volatility. Any deterministic filter would give no meaningful cyclical variables
in our model as the second moment would not be bounded. We therefore use a very simple
stochastic filter, a Solow-type detrending rule used in (17), to compute the cyclical com-
ponent of output. It captures our stochastic trend by a step function Aq caused by the dis-
crete increases of qt . In fact, we decompose the output series Yt into a stochastic trend Aq

and a stationary cyclical component Ŷt . Using (6) and (17 ), they are related according to
Ŷt ≡ A−q Yt = K̂ α

t L1−α .
In order to obtain an analytical measure now suppose that α = 0.5 and normalize L = 1.

We restrict our focus to this parametric restriction for the following two reasons. First, we are
able to compute all moments of cyclical output explicitly as they are given by the solution to
an ordinary differential equation. Second, we can show that it is reasonable to assume that the

6 Without loss of generality, we abstract from the case where K̂0 > K̂ ∗. Given that θ2 < 1, at some point in
time cyclical capital stock will be below its non-stochastic steady state with probability one.
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Fig. 2 The cyclical component
of output: This figure illustrates
the dynamics of cyclical output
with constant speed of
convergence (the slope of
dŶt /dt). Otherwise the dynamics
are similar to those of cyclical
capital stock (compare with
Fig. 1)

qualitative effects of taxation on other empirically identifiable measures such as consumption
are equivalent because the channels are the same.7

Using ItÔ’s formula and (23), cyclical output follows (cf. app. A.1 for a discussion)

dŶt = α K̂ α−1
t

(
θ0 K̂ α

t − θ1 K̂t
)
dt + (

(1 − θ2)
α K̂ α

t−L1−α − K̂ α
t−L1−α

)
dqt

= (
αθ0 − αθ1Ŷt

)
dt − (

1 − (1 − θ2)
α
)
Ŷt−dqt , where α = 0.5, L = 1. (24)

In fact, the dynamics of (24) are similar to the evolution of cyclical capital (23). The speed
of convergence, αθ1 is constant (the slope in Fig. 2). For our parametric restriction α = 0.5
the SDE in (24) has a linear drift. Again, we can gain insights from plotting αθ0 − αθ1Ŷt

on the vertical axis, while Ŷt is depicted on the horizontal axis (Fig. 2). Obviously, cyclical
output has support between 0 and its non-stochastic steady state, 0 < Ŷ0 < Ŷ ∗, which from
(24) is given by θ0/θ1. Starting from Ŷ0, as long as no innovation takes place, the cyclical
component approaches its upper bound. Each successful research project reduces cyclical
output by (1 − (1 − θ2)

α)Ŷt−, or 1 − (1 − θ2)
α percent of cyclical output an instant before

the innovation (which ensures that cyclical output always remains positive).
Exploiting the methods in García and Griego (1994), we can compute analytical moments

of the cyclical component and a closed-form measure of volatility. We use the coefficient of
variation (cv) as a scale-independent measure for volatility (see app. A.3 for details),

cv(Ŷt )
2 ≡ lim

t→∞
V ar0(Ŷt )
(
E0(Ŷt )

)2 = 1 − (1 − θ2)
α − αθ2

αθ1/λ + αθ2
, where α = 0.5. (25)

Looking at the cv shows that it is independent of θ0. This is not surprising as θ0 is a scaling
parameter and the cv is scale-independent. This can intuitively be understood from Fig. 2
where the effect of θ0 on the cyclical component could be removed by scaling both axes with
1/θ0. A lower speed of convergence, αθ1, implies a higher measure of relative dispersion,
cv. Clearly, the slower the economy approaches its non-stochastic steady state, the higher the
overall variability of cyclical components is. The jump term θ2 and the arrival rate, λ (note
that θ1/λ decreases in λ), have a positive effect on cv, meaning that larger and more frequent
jumps imply a higher measure of relative dispersion.

We can also derive a measure of volatility based on growth rates of cyclical components
of output, �ŷt ≡ ln Ŷt − ln Ŷt−�. Since this measure involves computing the variance of
an integral over capital rewards, an analytical derivation—as for our measure based on the

7 A similar analysis could be undertaken for α = σ. The analytical measure would then describe the volatility
of instantaneous utility. As the empirical counterpart for utility is not as obvious as for output, we prefer to
work with α = 0.5.

123



296 J Econ Growth (2011) 16:285–308

coefficient of variation—is not possible. Thus we use a deterministic Taylor expansion and
neglect third-order terms in order to obtain (see app. A.3 for a full derivation)

V ar(�ŷt ) ≡ lim
t→∞ V ar0

⎛

⎝ 1 − τi

1 + τk

t∫

t−�

rsds

⎞

⎠ + (α ln(1 − θ2))
2λ�

≈ lim
t→∞ V ar0

(
1 − τi

1 + τk
rt

)
�2 + (α ln(1 − θ2))

2λ� (26)

= α2

1−α

(
1−(1−θ2)1−α

(1−θ2)1−α + (1 − α) ln(1 − θ2)
)

(θ1 − ln(1 − θ2)λ) λ�2

+ (α ln(1 − θ2))
2 λ�.

Obviously, this measure shares the property of scale independence with the cv because we
consider growth rates, which by construction are scale independent. It can be interpreted as
an approximation for the variance of growth rates of cyclical output.

4.2 Output growth rates

An empirically more obvious measure is based on output growth rates, �yt ≡ ln Yt −ln Yt−�.
Using the detrending rule (17) it can be shown that

V ar(�yt ) ≈ α2

1−α

(
1−(1−θ2)1−α

(1−θ2)1−α + (1 − α) ln(1 − θ2)
)

(θ1 − ln(1 − θ2)λ) λ�2

+ (α ln(1 − θ2) + ln A)2 λ�, (27)

which again is only an approximation since we neglect third-order terms.
We can also derive an explicit expression for mean growth,

E(�yt ) ≡ lim
t→∞ E0(�yt ) = E(�ŷt ) + E(�qt ) ln A = λ ln A�. (28)

This long-run expected growth rate of the common stochastic trend is determined by the arrival
rate of new technologies. From (22), λ increases in the investment tax, τk , and decreases in
the tax on research, τr . We study the effects of taxes on volatility below.

Note that this measure comes closest to output growth residuals used in Ramey–Ramey
type regressions. As our model does not contain exogenous disturbances, a regression anal-
ysis of data produced by a simulated version of our model would not have to control for
any disturbances. In other words, �yt in our theoretical model corresponds to the output
growth residuals in the Ramey–Ramey regression. The next section will analyze, inter alia,
how taxes affect our theoretical ‘output growth residual’ �yt .

5 Volatility and taxation

5.1 Theoretical findings

Our measure of volatility in (25) is affected through three channels, the speed of convergence
αθ1, the jump size 1 − (1 − θ2)

α , and the arrival rate λ. As shown, these determinants appear
in the measures based on growth rates in (26) and (27). For illustration, the interpretation
of these channels is based on cyclical output in (24 ). Consider an arbitrary realization of
the cyclical component in Fig. 3. In line with our previous results, the speed of conver-
gence, αθ1, determines the range of cyclical output (0, θ0/θ1). The upper limit corresponds
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Fig. 3 The cyclical component of output and its determinants: This figure illustrates the determinants of the
cyclical component of output and thus the coefficient of variation (cv) using an arbitrary realization of the SDE
in (24). Our measure in (25) is determined by the speed of convergence, αθ , the arrival rate, λ, and the jump
size, 1 − (1 − θ2)α

to the non-stochastic steady state for cyclical capital, K̂ ∗ = (θ0/θ1)
1

1−α . However, the only
parameter which is relevant for the relative dispersion of cyclical output is θ1 (θ0 is a scaling
parameter). From its definition in (24) and the discussion of (23), it is clear that αθ1 denotes
the effective resource allocation to both research expenditures and total consumption. The
arrival rate λ measures the frequency of jumps (the inverse measures the expected length of
growth cycles). Finally, the size of the jump is measured by 1− (1−θ2)

α . Hence we find that
output volatility depends on the level of taxes if at least one of the following three channels,
(i) the speed of convergence, (ii) the jump size or (iii) the arrival rate depends on taxes.8

To understand the effects of taxation on macro volatility, we may restrict attention to the
speed of convergence and the arrival rate (or jump probability), because the jump size does
not depend on taxes. The independence of θ2 follows from the fact that the jump in consump-
tion, ξ = 1 − s + κ , from (24) is not affected by taxes. Economically, this result is obtained
because payoffs κ are not taxed and economic depreciation, s, does not imply tax-exemp-
tion as does physical depreciation, δ. The tax effects on the arrival rate λ are obtained from
(22). The parameter θ1 in ( 24) depends on taxes both directly and indirectly through the
arrival rate. The direct effect reflects the effective rate of physical depreciation, 1−τi

1+τk
δ + τa ,

whereas the indirect effect reflects tax effects on the arrival rate, λ, which in turn are due to
changes in private consumption, Ĉt , research expenditures, R̂t , and government consump-
tion, Ĝt . Inserting λ into θ1 gives unambiguous results (cf. app. D.1 for details). For reading
convenience, the qualitative results are summarized in tab. 1.

5.2 Comparative statics

Let us now combine the effects of our three channels on output volatility measured by (25)
in a comparative static analysis. As we have only two tax-dependent channels, the speed of
convergence, αθ1, and the arrival rate, λ, taxes affect the variance of the limiting distribution
of stationary output by either changing the speed of convergence (without affecting λ in θ1),
the arrival rate, or both. Clearly, a tax which has no effect on θ1 and λ, does not affect our
measures either. The tax on consumption expenditures, τc, is such a tax because government
consumption completely offsets changes in private consumption.

8 If growth and cycles are exogenous, i.e., if there is an exogenous arrival rate λ without research, the model
describes a continuous-time RBC model with vintage-specific capital. In this case, macro volatility is partly
endogenous and affected by taxation through the speed of convergence, αθ1.
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Table 1 Qualitative effects of taxes on composite parameters, volatility and growth

Taxes

τi τc τr τk τa
(income) (consumption) (research) (investment) (wealth)

αθ1 (speed of convergence) − 0 − +a +
1 − (1 − θ2)α (jump size) 0 0 0 0 0

λ (arrival rate) 0 0 − + 0

E(�yt ) (mean growth rate) 0 0 − + 0

V ar(�yt ) (variance of growth rates) − 0 − +a +
cv(Ŷt ) (coefficient of variation) + 0 − + −
Note: This table shows the qualitative tax effects of the level of tax rates on output volatility and growth and
their components. Our measures include the speed of convergence of cyclical output, αθ1, the jump size,
1 − (1 − θ2)α , and the arrival rate, λ, �yt , and the coefficient of variation of cyclical output, cv(Ŷt )
a For δ sufficiently small

When taxing wealth, τa , the arrival rate λ is not affected. The speed of convergence, αθ1,
increases which causes cv in (25) to decline. Economically, τa decreases the households’
return on savings, or equivalently, increases the effective rate of depreciation. This in turn
implies a lower non-stochastic steady-state, K̂ ∗, and more resources are used for consump-
tion and research. Holding constant the length of a cycle but ‘squeezing’ cyclical output in
Fig. 3, the relative dispersion of cyclical output must be lower.

An increase in the income tax, τi , reduces the speed of convergence αθ1 but does not
affect the jump probability, λ. As a consequence, volatility unambiguously increases in this
tax. How can this result be understood? The parameter θ1 in (24) decreases for the follow-
ing reason: only net investment is taxed (as discussed above). This means that a higher tax
on income increases the positive effect of the refunding policy and reduces the impact of
the depreciation rate, δ. A lower effective depreciation rate increases incentives for capital
accumulation, and the non-stochastic steady-state capital stock, K̂ ∗, increases.

For the taxes on research, τr , and investment, τk , the results are less clear-cut. With these
taxes the arrival rate λ is affected which in turn changes cv directly and indirectly through θ1.
The direct effect of λ on cv is unambiguously positive. Computing the derivatives, however,
we obtain the results for our measures of volatility as in tab. 1. A higher tax on research
depresses the arrival rate and the ratio θ1/λ increases, which in turn decreases cv in (25).
Intuitively, higher rates τr make investment in research less profitable and the arrival rate
falls. Less frequent jumps imply a lower relative dispersion of cyclical output. A lower λ

also decreases θ1, thus less resources are used for consumption and research. This implies a
larger range 1/θ1 in Fig. 2 and higher volatility. The indirect effect through the lower speed
of convergence does not compensate the direct effect of a lower arrival rate. Hence, the ratio
θ1/λ increases and cv in ( 25) decreases. A similar interpretation can be given for τk .

Given the discussion above, we can now understand why measures based on output growth
rates may also depend on taxes. Consider the speed of convergence αθ1. As shown above,
an increase in θ1 decreases the range of the cyclical component. Obviously, this decreases
the cv and variables in efficiency units, but increases the variance of capital rewards. This
in turn implies a higher variance of output growth rates. Hence, the tax effects implied
through the propagation of shocks is reversed for measures based on growth rates. However,
the qualitative effects on the arrival rate are identical to our measures of relative disper-
sion.
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5.3 The link between volatility and growth

We are now prepared to make our main point. For a given tax policy, our economy follows
a certain cyclical growth path. Now imagine a second economy with a different tax policy
and a third one with yet another tax policy and so on. Given our comparative static results,
it is straightforward to understand why growth and volatility are correlated and that this cor-
relation can take any sign—depending on cross-country differences in tax levels and which
measure we use for volatility.

Suppose two countries differ only in the level of the investment tax (value added tax
on physical investment goods). Tab. 1 shows that both growth and volatility increase in the
investment tax (independently of which measure is used), as resources are shifted to R&D. In
a cross-section of countries, we expect a positive correlation between volatility and growth.
The same positive correlation would exist if countries differ only in their tax on research. Our
model predicts a negative correlation between volatility and growth for various combinations
of tax rates. An example of this is when countries with a high tax on investment also have
a high tax on income. The investment tax increases volatility and growth, the income tax
decreases volatility (focusing on the measure based on growth rates in tab. 1). If the nega-
tive effect is stronger than the volatility-increasing effect of the investment tax, we expect a
negative correlation between investment and growth.

The reader may want to discuss our examples on tax policy structures as well as the gen-
erality of our parametric restrictions α = σ (the sign of tax effects may be ambiguous in
the general case). Yet, our general point remains: differences in economic policies across
countries may imply differences in output growth rates and output volatility. Depending on
cross-country differences, correlations of any magnitude and sign can occur.

6 Empirical implications and findings

6.1 Implications for empirical research

Given our theoretical findings on the effects of tax levels on both volatility and growth, our
message for empirical work is that a volatility-growth regression in the spirit of Ramey and
Ramey (1995) should include controls of this type. To elaborate on this point, consider the
following extension of Ramey and Ramey,

�yit = νσi t + θ Xit + εi t , where εi t ∼ N (0, σ 2
i t ), (29a)

log(σ 2
i t ) = αi + μt + βZit . (29b)

�yit is the growth rate of output for country i in year t computed as log difference; σi t

is the standard deviation of residuals; Xit is a vector of control variables such as the Levine-
Renelt variables and/or taxes; Zit is a vector of control variables (could be a subset of Xit );
αi and λt are country and time fixed effects; θ and β are vectors of coefficients. The key
parameter of interest in a volatility-growth analysis is ν, which links growth to volatility.

For Zit = 0, this specification coincides with the basic Ramey–Ramey setup.9 Given
our theoretical arguments, the conditional variance equation needs to include additional con-
trols Zit . As we have seen that the level of taxes can have an effect on volatility, we would
expect β to be significant if Zit measures the level of taxes. If those measures were constant

9 The authors extend their basic framework where government-spending volatility replace the fixed-effects
in the conditional variance equation. Proceeding in this direction does not change our results (not shown).
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over time, Zit = Zi , our proposed extension would be equivalent to country-specific fixed
effects—as already included in the basic Ramey–Ramey setup. New empirical insights from
our arguments therefore require sufficient variation in taxes over time. It is well-known from
Mendoza-Razin-Tesar tax rates that such variation is present in the data.

We admit that, though it illustrates our argument, the absence of uncertainty other than
endogenous innovations makes it difficult to relate our theoretical measure of output vol-
atility in (27) to the conditional variance of residuals (29b). In a stylized Ramey–Ramey
framework, however, a regression of growth rates on a constant, �yit = μ + εi t in which μ

is the mean output growth rate shows that the conditional residual variance, by construction,
coincides with our theoretical measure. This suggests that the variance of output growth rates
and the variance of the error term may indeed share some important properties. We therefore
feel justified in letting our empirical approach be guided by our theoretical model.10

6.2 Empirical findings

Our empirical sample consists of 20 countries for which we have data for the period from
1970 to 2009.11 To measure the tax burden of a representative household on the macro level
we follow Mendoza et al. (1994). We employ data from the OECD Revenue Statistics 2010
(OECD-iLibrary, http://dx.doi.org/10.1787/data-00262-en) and OECD Aggregate National
Accounts 2010 (http://dx.doi.org/10.1787/na-ana-data-en) to obtain updated tax ratios and
annual growth rates of real GDP per capita respectively (cf. Mendoza et al. 1994; Posch
2011a). We also compute the relative price of investment from the Penn World Table 6.3 as
in Restuccia and Urrutia (2001). This variable measures barriers to capital accumulation and
growth. It turned out to be to be important for accounting for cross-country differences in
investment rates.12

In tab. 2 we present the results from a joint estimation of equations (29a) and (29b). The
first column is a specification with Zit = 0, i.e., with no variables in the conditional variance
equation apart from fixed effects. The only explanatory variable Xit in the growth equation is
the price of aggregate investment over consumption (R P RI C E). This specification extends
the basic Ramey–Ramey setup by allowing for variations in the relative price of investment.
The column ‘Ramey–Ramey’ contains our benchmark results for understanding the effects
of adding further controls to the conditional variance equation.

The column ‘our claim’ adds control variables to both the growth equation ( 29a) and the
conditional variance equation (29b). We include four different taxes: the tax induced cost of
dependent labor (L ABO R), the tax induced cost of capital (C AP I T AL), the consumption
tax (C O N S) and the corporate income tax (C O R P). We find that 3 out of 4 tax measures
are significant at the 5% level. Hence, the level of taxes indeed appears to affect volatil-
ity. For example, if L ABO R is increased by one percentage point, the variance of output
growth rates decreases by 8.85 percent. We also find that the conventional Ramey–Ramey
coefficient ν is affected sizably. Accounting for taxes in the conditional residual variance
equation strengthens the previous findings of a statistically significant negative correlation
between growth and volatility. Compared to our benchmark specification, the link remains

10 Empirical work by Posch (2011a) has shown that the impact of taxes on volatility is very similar for a
specification as in (29b) and a specification where the variance of the error term is replaced by observed output
variances (estimated e.g. through rolling windows).
11 Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Italy, Japan, Korea,
Netherlands, New Zealand, Norway, Spain, Sweden, Switzerland, United Kingdom, United States.
12 We would like to thank a referee for drawing our attention to this work.
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Table 2 The link between volatility and growth

OECD Ramey–Ramey Our claim

L AB O Ri,t−1 θ1 −0.15 (0.08)

C AP I T ALi,t−1 θ2 0.06 (0.07)

C O N Si,t−1 θ3 0.12 (0.08)

C O R Pi,t−1 θ4 −0.02 (0.05)

R P RI C Ei,t−1 θ5 −0.06 (0.01)∗∗∗ −0.07 (0.01)∗∗∗
L AB O Ri,t−1 β1 −8.84 (2.37)∗∗∗
C AP I T ALi,t−1 β2 8.55 (2.22)∗∗∗
C O N Si,t−1 β3 4.81 (3.17)

C O R Pi,t−1 β4 −4.19 (1.70)∗
σi,t ν −1.61 (0.51)∗∗ −2.46 (0.83)∗∗
Degrees of freedom 672 664

Log-likelihood −1894.8 −1918.1

Country fixed effects θi Yes Yes

Country fixed effects αi Yes Yes

Time fixed effects μt Yes Yes

Notes: This table reports the semi-elasticities on output growth innovations treating variances as parameters
using MLE. Similar to Ramey and Ramey (1995) all specifications include two lags of log real GDP per capita
and a trend variable in the growth equation. Standard errors in parentheses. Including government spending
volatility does not change our results, whereas its estimated parameter is not different from zero for any con-
ventional significance level (not shown)
Signif. codes: ‘∗∗∗’ 0.001 ‘∗∗’ 0.01 ‘∗’ 0.05 ‘.’ 0.1

negative and increases in absolute terms. It appears that previous estimates have been much
too modest and the (negative) correlation is stronger than found so far.

As one caveat, it is well-known that although the Mendoza-Razin-Tesar tax rates are very
useful on the one hand, it is difficult to link them closely to theoretical (marginal) tax rates
on the other. For example, the income tax in our model is a composite of L ABO R and
C AP I T AL in the estimation. This makes it difficult to conclude whether the empirical find-
ing of a negative effect (L ABO R) and a positive effect (C AP I T AL) confirms or contradicts
our theoretical prediction in tab. 1 that an income tax reduces volatility.

We conclude this short empirical application by stressing that our fundamental point
made in the theoretical model—a level variable affects volatility and growth—is con-
firmed. Future work should construct theoretical models which closely replicate the con-
struction of the empirical tax ratios. With such one-to-one correspondence between the-
oretical and empirical taxes, more insights can be gained into the volatility effect of
taxes.

7 Conclusion

There is a growing literature studying the link between volatility and growth. This paper theo-
retically shows that the correlation between volatility and growth can be positive or negative.
The sign of the correlation is determined inter alia by the economic policy implemented by
the country under consideration.
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We illustrate our main point by identifying taxes as the truly fundamental parameters
which determine the growth rate and the degree of volatility of a country. Our theoretical
contribution is that our measures of volatility are obtained analytically. This allows us to
follow an analytical approach in understanding the channels through which the level of taxes
affects both the volatility and the growth processes. We find that taxes determine the sign
of the correlation between volatility and growth. For example, if taxes on wealth are used
to facilitate R&D investment, growth and volatility are positively correlated. In contrast, if
taxes on wealth are used to promote physical capital investment, a negative link may occur.

In an empirical application of the Ramey–Ramey type, we add levels of taxes to the growth
and the conditional variance equation. We find that the growth-volatility link is much more
negative than in regressions where taxes are not taken into account. In addition, taxes do
indeed appear to affect volatility.

This paper opens up interesting future research avenues. Our theoretical model does not
allow for any exogenous source of volatility. In an extended framework with both endoge-
nous and exogenous shocks, one can identify which share of volatility is due to endogenous
sources. This would provide a framework that allows to split the growth-volatility link into
a correlation-component and into a causation-component.

Appendix

A.1 Cyclical components

Using (23) and ItÔ’s formula, dŶt = L1−αd K̂ α
t , we compute

d K̂ α
t = α

(
θ0 K̂ α−1

t − θ1
)
K̂ α

t dt − (
1 − (1 − θ2)

α
)

K̂ α
t−dqt ,

which is an SDE with a non-linear drift component. The non-stochastic steady state is K̂ α∗ =
(θ0/θ1)

α
1−α , the speed of convergence is αθ1−(2α−1)θ0 K̂ α−1

t is not constant unless α = 0.5,
and the jump term 1−(1 − θ2)

α , increases (decreases) relative to K̂ 1−σ
t for α > 0.5 (α < 0.5)

and is the same for α = 0.5.

A.2 Properties of the Poisson process

We use the martingale property of various expressions. These expressions are special cases
of

∫ t
0 f (qs, s) dqs − λ

∫ t
0 f (qs, s) ds, which is a martingale (cf. García and Griego 1994),

i.e.,

E0

(∫ t

0
f (qs, s) dqs − λ

∫ t

0
f (qs, s) ds

)
= 0, (30)

where λ is the (constant) arrival rate of qt .

A.3 Appendix for (25) and (26)

Use the integral version of (24), Ŷt = Ŷ0 +∫ t
0

(
αθ0 −αθ1Ŷs

)
ds −∫ t−

0

(
1− (1− θ2)

α
)
Ŷsdqs,

and the martingale property (cf. app. A.2), we obtain

E0(Ŷt ) = Ŷ0 +
t∫

0

(
αθ0 − αθ1 E0(Ŷs)

)
ds − λ

t−∫

0

(
1 − (1 − θ2)

α
)
E0(Ŷs)ds, (31)
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which gives the evolution of the first moment of Ŷt as a linear ordinary differential equation
(ODE) which can be solved and is shown to converge to a constant. Using a similar approach,
higher-order moments can be computed easily.13 In fact, denoting the nth moment by

m̂n
t ≡ E0(Ŷ

n
t ), (32)

the first and second moment of the stationary distribution are given by

m̂1 ≡ lim
t→∞ m̂1

t = αθ0

αθ1 + λ(1 − (1 − θ2)α)
, (33)

m̂2 ≡ lim
t→∞ m̂2

t = θ0

θ1 + λθ2
m̂1 . (34)

A scale-independent measure is the coefficient of variation (cv). Given that the variance
of a random variable is the difference between its second moment and the square of its mean,
it is defined by

cv2 ≡ lim
t→∞

V ar0(Ŷt )
(
E0(Ŷt )

)2 = 1 − (1 − θ2)
α − αθ2

αθ1/λ + αθ2
, (35)

where for the second equality we inserted the moments from (33) and (34), respectively.
In order to obtain moments based on growth rates, we use integral equations for the

log-variables and exploit the martingale property (cf. app. A.2). For cyclical capital it reads

d ln K̂t = (
θ0 K̂ α−1

t − θ1
)
dt + (

ln K̂t − ln K̂t−
)
dqt

= (
θ0 K̂ α−1

t − θ1
)
dt + ln(1 − θ2)dqt . (36)

Integrating gives the growth rate of cyclical capital per unit of time � as

ln K̂t − ln K̂t−� =
t∫

t−�

1 − τi

1 + τk
rs/αds − θ1� + ln(1 − θ2)(qt − qt−�), (37)

where we relate growth rates to the integrated process of capital rewards, rt = α K̂ α−1
t L1−α .

Similarly, the growth rate of cyclical output is �ŷt ≡ ln Ŷt −ln Ŷt−� = α(ln K̂t −ln K̂t−�).14

In order to calculate the variance of growth rates the following lemma is very useful.

Lemma 1 Suppose that ln K̂t follows (36), then

lim
t→∞ Cov0

(
ln K̂t − ln K̂t−�, qt − qt−�

)
= ln(1 − θ2)λ�.

See web app. C.3 	

After some algebra, we obtain the asymptotic variance as (cf. app. A.7)

lim
t→∞ V ar0(�ŷt ) = lim

t→∞ V ar0

⎛

⎝ 1 − τi

1 + τk

t∫

t−�

rsds

⎞

⎠ + (α ln(1 − θ2))
2λ�. (38)

13 The structure of the moments is remarkable as it shows that the distribution of Ŷt exists, is unique and
represents a generalization of the β-distribution (thanks to Christian Kleiber for pointing this out). As shown
in Appendix A.4, fairly complex expressions appear for state dependent moments.
14 Obviously the expected growth rate of cyclical variables per unit of time is zero. This result is intuitive
because K̂t is bounded between 0 and K̂ , which implies a stationary distribution (as illustrated in Fig. 1).
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This result is remarkable because it shows that the variance of growth rates depends on the
variance of the (integrated) process of capital rewards, which in turn follows

drt = c1rt (c2 − rt )dt + c3rt−dqt , (39)

where c1 ≡ 1−α
α

1−τi
1+τk

, c2 ≡ (1 − α)θ1/c1, and c3 ≡ (1 − (1 − θ2)
1−α)/(1 − θ2)

1−α . In fact,
this SDE describes the (transitional) equilibrium dynamics of capital rewards, often referred
to as the stochastic Verhulst equation. It is shown that r has a unique limiting distribution,
and the moments of the limiting distribution are available in closed-form (cf. app. A.6)

E(r) = c1c2 + ln(1 + c3)λ

c1
, V ar(r) = c3λ − ln(1 + c3)λ

c1
E(r). (40)

We use the deterministic Taylor expansion to approximate the asymptotic variance of the
integrated process by (neglecting third order terms, cf. Posch 2011a)15

lim
t→∞ V ar0

(∫ t

t−�

rsds

)
≈ lim

t→∞ V ar0 (rt�) = V ar(r)�2. (41)

Starting from (38) and inserting (41),

V ar(�ŷt ) ≡ lim
t→∞ V ar0(�ŷt ) ≈ lim

t→∞ V ar0

(
1 − τi

1 + τk
rt

)
�2 + (α ln(1 − θ2))

2λ�,

which is (26) in the main text.

A.4 Computing moments

Express (31) as a differential equation and use (32) to obtain dm̂1
t = (

αθ0 − (αθ1 + λϑ2)m̂1
t
)

dt, where ϑ2 ≡ 1 − (1 − θ2)
α . Hence, the first moment follows a linear ODE with solution

m̂1
t =e−(αθ1+λϑ2)t

⎛

⎝m̂1
0+

t∫

0

e(αθ1+λϑ2)sαθ0ds

⎞

⎠ = e−(αθ1+λϑ2)t

(

m̂1
0+αθ0

e(αθ1+λϑ2)t − 1

αθ1+λϑ2

)

.

It can be simplified to

m̂1
t = e−(αθ1+λϑ2)t

(
m̂1

0 − αθ0

αθ1 + λϑ2

)
+ αθ0

αθ1 + λϑ2
. (42)

As αθ1 + λϑ2 > 0, the first moment of Ŷt is in the long run given by (33). Similarly, for
higher moments, the basic ODE determining the evolution of Ŷ n

t is from (24)

dŶ n
t = nŶ n−1

t

(
αθ0 − αθ1Ŷt

)
dt − (

1 − (1 − θ2)
αn)

Ŷ n
t−dqt

= n
(
αθ0Ŷ n−1

t − αθ1Ŷ n
t

)
dt − (

1 − (1 − θ2)
αn)

Ŷ n
t−dqt . (43)

Using the integral version, applying expectations and the martingale result ( 30), we obtain
d E0Ŷ n

t = (
nαθ0 E0Ŷ n−1

t − (nαθ1 + λ (1 − (1 − θ2)
αn)) E0Ŷ n

t

)
dt. Using (32) we get

dm̂n
t = (

nαθ0m̂n−1
t − (

nαθ1 + λ
(
1 − (1 − θ2)

αn))
m̂n

t
)

dt. (44)

15 A precise measure would take into account the auto-covariance function based on asymptotic moments
limt→∞ E0(rsru) which turn out to be negligible in simulations. Joint moments depend on higher-order
moments and because of the non-linear dynamics in (39) are not available analytically.
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It shows that all moments converge to finite limits for t → ∞. For the first moment, this
follows from (42). The proofs for higher moments follow an identical approach. In short, for
asymptotic moments where dm̂n

t /dt = 0, we obtain from (44)

m̂n = nαθ0

nαθ1 + λ (1 − (1 − θ2)αn)
m̂n−1 . (45)

Thus n = 2 implies (34), with n = 1 it becomes (33 ), and by definition m̂0 = 1.

A.5 Limiting distribution

If the nth moment m̂n
t ≡ E0(Ŷ n) has bounded support, then m̂ j ≡ limt→∞ E0(Ŷ

j
t ) is the

j th moment of the limiting distribution for any j < n, and the moments in ( 33) and (34)
converge to the moments of the limiting distribution. Moreover, Ŷt has a unique limiting
distribution (Rao 1973, p.121; Casella and Berger 2001, Theorem 2.3.11.). In other words,
the sequence {Ŷt }∞t=t0 converges in distribution to a random variable Ŷ ,

Ŷt →D Ŷ where 0 < Ŷt < Ŷ ∗. (46)

In fact, the limiting density of any smooth transformation of Ŷt is determined by the change
of variable formula for densities (cf. Merton 1975).

By inspection of moments in (45), Ŷ has a generalized β-distribution. For θ2 = 1, the
moments in (45) are m̂n = nαθ0

nαθ1+λ
m̂n−1. Starting from m̂0 = 1, repeated inserting yields

m̂n = (αθ0)
nn!

∏n
i=1(iαθ1+λ)

=
(

θ0

θ1

)n
�(n + 1)

∏n
i=1(i + λ/(αθ1))

=
(

θ0

θ1

)n
�(n + 1)�(1 + λ/(αθ1))

�(n + 1 + λ/(αθ1))
,

where � is the gamma function. Apart from the scaling factor (θ0/θ1)
n , the last expression

denotes the nth moment of a β-distribution with parameters 1 and λ/(αθ1). Hence, Ŷ has
the asymptotic representation Ŷ = (θ0/θ1)

n X, where X ∼ Beta(1, λ/(αθ1)). For θ2 �= 1,
we obtain a generalized β-distribution which, to the best of our knowledge, has not been
encountered before. Analyzing its properties in detail should be done in future research.

A.6 Moments of the rental rate of capital

Along the lines of our derivations for (46) it can be shown that rt is a smooth transformation of
a cyclical variable for the more general case α = σ . Hence, the sequence {rt }∞t=t0 converges
in distribution to a random variable r (compare also to Posch 2009b),

rt →D r where r∗ < rt < ∞. (47)

Using (23) and rt = BqαK α−1
t L1−α = α K̂ α−1

t L1−α we obtain

d K̂ α−1
t = (α − 1)K α−2

t

(
θ0 K̂ α

t − θ1 K̂t
)
dt + (

K̂ α−1
t − K̂ α−1

t−
)
dqt

= (α − 1)
(
θ0 K̂ 2α−2

t − θ1 K̂ α−1
t

)
dt − (

1 − (1 − θ2)
α−1 )

K̂ α−1
t− dqt ,

which implies defining c1 to c3 as in (39),

drt = (α − 1)r

(
1 − τi

1 + τk
rt/α − θ1

)
dt + (

(1 − θ2)
α−1 − 1

)
rt−dqt

= c1rt (c2 − rt ) dt + c3rt−dqt .
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We use the smooth transformation ln rt ,

ln rt →D ln r where ln r∗ < ln rt < ∞, (48)

to obtain d ln rt = c1(c2 − rt )dt + ln(1 + c3)dqt , which has the solution

ln rt − ln rt−� =
t∫

t−�

c1(c2 − rs)ds + ln(1 + c3)(qt − qt−�).

Employing the property that ln rt and ln rt−� share the same asymptotic mean as from (48),

lim
t→∞ E0(ln rt )− lim

t→∞ E0(ln rt−�) = c1c2�−c1 lim
t→∞

t∫

t−�

E0(rs)ds+ln(1 + c3) lim
t→∞ E0(q�)

⇒ E(r) ≡ lim
t→∞ E0(rt ) = c1c2 + ln(1 + c3)λ

c1
.

For the second moment, we use the integral equation applying the expectation operator,

d E0(rt ) = c1
(
c2 E0(rt ) − E0(r

2
t )

)
dt + c3 E0(rt−)λdt.

Letting t → ∞ we obtain for the integral equation

lim
t→∞ E0(rt ) − lim

t→∞ E0(rt−�) = lim
t→∞

t∫

t−�

(c1c2 + c3λ)E0(rs)ds − lim
t→∞

t∫

t−�

c1 E0(r
2
s )ds

⇔ 0 = lim
t→∞ E0(rt )(c1c2 + c3λ)� − lim

t→∞ E0(r
2
t )c1�

⇒ E(r2) ≡ lim
t→∞ E0(r

2
t ) = E(r)

c1c2 + c3λ

c1
.

Hence the asymptotic variance, i.e., the variance of the limiting distribution for rt is

V ar(r) ≡ lim
t→∞ V ar0(rt ) = E(r2) − (E(r))2 = c3λ − ln(1 + c3)λ

c1
E(r).

Note that the variance is proportional to the mean, which seems plausible given the geometric
structure of the stochastic differential in (39).

A.7 Moments of growth rates

Because ln K̂t is a smooth transformation of a the rental rate of capital, rt = α K̂ α−1
t L1−α ,

the sequence {ln K̂t }∞t=t0 converges in distribution to a random variable ln K̂ ,

ln K̂t →D ln K̂ where − ∞ < ln K̂t < ln K̂ ∗.

Intuitively, cyclical variables ln K̂t and ln K̂t−� share the same asymptotic mean, which is
the mean of the limiting distribution, E(ln K̂ ). Therefore, defining

E(�yt ) ≡ lim
t→∞ E0(�yt ) = lim

t→∞ E0
(

ln K̂t − ln K̂t−�

)
α + lim

t→∞ E0(qt − qt−�) ln A

= E0(q�) ln A = λ� ln A

for any t0 > 0, gives the asymptotic mean of output growth rates. Economically, it employs
a large sequence of growth rates of length �.
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Lemma 2 Given capital rewards as in (39), then

lim
t→∞ Cov

⎛

⎝
t∫

t−�

(
1 − τi

1 + τk
rs/α

)
ds, qt − qt−�

⎞

⎠ = 0

is asymptotically uncorrelated.

Proof Observe that from Cov(aX + bY, Z) = aCov(X, Z) + bCov(Y, Z) we have

Cov
(

ln K̂t − ln K̂t−�, qt − qt−�

)
= Cov

⎛

⎝
t∫

t−�

(
1 − τi

1 + τk
rs/α

)
ds, qt − qt−�

⎞

⎠

+ ln ( 1 − θ2) Cov (qt − qt−�, qt − qt−�) .

Employing Lemma 1 and the property V ar(q�) = λ� gives the asymptotic result. 	

Observe that using growth rates of cyclical capital stock in (37) and Lemma 2,

V ar(ŷt ) = lim
t→∞ V ar0

⎛

⎝ 1 − τi

1 + τk

t∫

t−�

rsds

⎞

⎠ + α2(ln(1 − θ2))
2 lim

t→∞ V ar0(q�)

+α2 ln(1 − θ2) lim
t→∞ Cov0

⎛

⎝ 1 − τi

1 + τk

t∫

t−�

rs/αds, qt − qt−�

⎞

⎠ .

Using Lemma 2 we obtain the measure in (38 ). A similar approach computes the variance
of observed output growth rates (cf. web app. C.2 for details).
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