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Abstract

This paper shows that non-linearities from a neoclassical production function alone
can generate time-varying, asymmetric risk premia and predictability over the business
cycle. These empirical key features become relevant when we allow for non-normalities
in the form of rare disasters. We employ analytical solutions of dynamic stochastic
general equilibrium models, including a novel solution with endogenous labor supply,
to obtain closed-form expressions for the risk premium in production economies. In
contrast to an endowment economy with constant investment opportunities, the cur-
vature of the consumption function affects the risk premium in production economies
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1 Introduction

“... the challenge now is to understand the economic forces that determine the

stochastic discount factor, or put another way, the rewards that investors demand

for bearing particular risks.” (Campbell, 2000, p.1516)

In general equilibrium models, the ‘stochastic discount factor’, i.e., the stochastic process

used to discount returns of any security, is not only determined by the consumption-based

first-order condition, but also linked to business cycle characteristics. In macroeconomics,

dynamic stochastic general equilibrium (DSGE) models have been successful in explaining

co-movements in aggregate data, but relatively less progress has been made to reconcile their

asset market implications with financial data (cf. Grinols and Turnovsky, 1993; Jermann,

1998, 2010; Tallarini, 2000; Lettau and Uhlig, 2000; Boldrin, Christiano and Fisher, 2001;

Lettau, 2003; Campanale, Castro and Clementi, 2010).1 One main advantage of using general

equilibrium models to explain asset market phenomena is that the asset-pricing kernel is

consistent with the macro dynamics.

However, surprisingly little is known about the risk premium in non-linear DSGE models,

i.e., the minimum difference an individual requires to accept an uncertain rate of return,

between its expected value and the certainty equivalent rate of return on saving he or she is

indifferent to.2 At least two primary questions present themselves. Which economic forces

determine the risk premium in general equilibrium? What are the implications of using

production based models compared to the endowment economy? This paper fills the gap by

studying asset pricing implications of the prototype production economy analytically. Why

is this important? We argue that a clear understanding of the risk premium can best be

achieved by working out analytical solutions. These solutions are shown to be important

knife-edge cases which can therefore be used to shed light on our numerical results.

In a nutshell, this paper shows that a neoclassical production function alone generates key

features of the risk premium. The economic intuition is that the individual’s risk aversion,

excluding singular cases, is not constant in a neoclassical production economy.

We use analytical solutions of DSGE models. For this purpose we readopt formulating

models in continuous time (as in Merton, 1975; Eaton, 1981; Cox, Ingersoll and Ross, 1985),

which gives closed-form solutions for a broad class of models and parameter sets.3 Recent

1There is an increasing interest in macro-finance DSGE models (cf. Kaltenbrunner and Lochstoer, 2006;
Gourio, 2010), A survey on the intersection of macro and finance is provided in Cochrane (2008, chap. 7) .

2Grinols and Turnovsky (1993) and Turnovsky and Bianconi (2005) study asset pricing implications
of aggregate risk and/or idiosyncratic shocks in stochastic endogenous growth models with a quasi-linear
production technology. Our formulation focuses on non-linear DSGE models with transitional dynamics.

3Analytical solutions to DSGE models are used in Turnovsky (1993, 2000), Corsetti (1997), Wälde (2005),
Turnovsky and Smith (2006), and Posch (2009) (a detailed discussion can be found in Wälde, 2010).
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research emphasizes the importance of non-normalities and non-linearities in explaining busi-

ness cycle dynamics for the US economy (Fernández-Villaverde and Rubio-Ramı́rez, 2007;

Justiniano and Primiceri, 2008; Posch, 2009). Therefore, our starting point is Lucas’ fruit-

tree endowment economy with non-normalities in the form of rare disasters. We obtain

closed-form expressions for the risk premium from the Euler equation and relate it to the

market premium over a riskless rate of return. Subsequently the framework is extended to a

non-linear production economy with endogenous consumption choice and labor supply. Our

approach still gives closed-form expressions under parametric restrictions.

The major findings can be summarized as follows. While the endowment economy implies

a constant risk premium, non-linearities in production economies can generate time-varying,

asymmetric risk premia and predictability over the business cycle.4 Although these empirical

key features of the risk premium are negligible in the standard real business cycle (RBC)

model, we show that they become relevant when we allow for non-normalities in the form

of rare disasters (Rietz, 1988; Barro, 2006, 2009). Our results are based on the finding that

the ‘effective risk aversion’ is not constant for non-homogeneous consumption functions, as

it refers to the risk aversion of the value function (cf. Carroll and Kimball, 1996).5 Even

for constant relative risk aversion (CRRA) of the direct utility function, the individual’s

effective risk aversion is not necessarily constant since it refers to gambles with respect to

wealth. As we show in Section 3.2, non-homogeneous consumption functions are typically

found in production economies.6

One caveat of many discrete-time models is the difficulty to obtain analytical solutions.

To some extent, it is due to the difficulty of solving these models that endowment economies,

in contrast to the typically non-linear production economies used in macroeconomics, are

popular for asset pricing in finance. In particular by focusing on the effects of uncertainty,

the traditional approach of linearization about the non-stochastic steady state does not

provide an adequate framework. Alternatively, the literature suggests either risk-sensitive

objectives (Hansen, Sargent and Tallarini, 1999; Tallarini, 2000) or log-linearization methods

(Campbell, 1994; Lettau, 2003). Similarly, numerical strategies employ perturbation and

higher-order approximation schemes (cf. Taylor and Uhlig, 1990; Schmitt-Grohé and Uribe,

2004; Fernández-Villaverde and Rubio-Ramı́rez, 2006) . Although these numerical methods

4Both the time-varying feature and evidence that the risk premium increases more in ‘bad times’ than it
decreases in ‘good times’ are found empirically (Lettau and Ludvigson, 2001; Mehra and Prescott, 2008).

5Any function f(x) that does not have the property that for any scalar b > 0 there is a scalar k such that
bkf(x) = f(bx) is said to be non-homogeneous. A consumption function gives optimal consumption (the
control variable) as a function of the state variables.

6Other contributions to Mehra and Presott’s (1985) equity premium puzzle for endowment economies,
e.g., Epstein and Zin (1989); Abel (1990, 1999); Constantinides (1990); Campbell and Cochrane (1999);
Veronesi (2004); Bansal and Yaron (2004), generate time-varying risk aversion through different channels.
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usually are highly accurate locally, the effects of large economic shocks, such as rare disasters

on approximation errors, are largely unexplored.

Our formulation of DSGE models does not suffer from such limitations. First, we use

closed-form solutions for reasonable parametric restrictions to study the determinants of the

risk premium analytically. Second, we make use of powerful numerical methods to examine

the properties of the risk premium for a broader parameter range without relying on local

approximations (cf. Posch and Trimborn, 2010). We obtain optimal consumption, optimal

hours and the risk premium as functions of financial wealth in the neoclassical production

economy, while our closed-form solutions can be used to gauge and ensure the accuracy of

the numerical method for large economic shocks. Thus we propose this formulation as a

workable paradigm in the macro-finance literature.

This paper is closely related to Lettau (2003), who derives asset pricing implications in

a real business cycle model using log-linear approximations. The present paper shows that

the researcher overlooks potentially important properties of the risk premium implied by the

neoclassical production economy when following this approach: a log-linear approximation

of the consumption function, by construction, implies a constant risk premium. As we show

in Section 3.2, this property is in fact obtained for knife-edge solutions only.

Our finding about the importance of the curvature of the consumption function for the

risk premium in production economies relates to Jermann (2010), who studies the properties

of the risk premium as implied by producers’ first-order conditions. The author identifies

the curvature of adjustment costs as a key determinant of the risk premium.

There is a literature documenting that the Barro-Rietz rare disaster hypothesis generates

a sizable risk premium.7 The most fundamental critique, however, is on the calibration of rare

disasters. Although there is empirical evidence that economic disasters have been sufficiently

frequent and large enough to make the hypothesis viable (cf. Barro, 2006), we emphasize that

our results do not crucially depend on the rare disaster hypothesis. However, the hypothesis

is excellent at illustrating the implications of the neoclassical production function (which

for small risk premia would be negligible) for two reasons. First, it substantially increases

the level of the risk premium without loosing analytical tractability. Second, it does not

require other forms of non-linearities such as habit formation or recursive preferences which

allows us to obtain very sharp results. Thus we do not contribute to the debate of why the

historic equity premium seems too high given the low aggregate consumption volatility and

our priors about risk aversion. In contrast, we confirm that the ability to buffer risk makes

7As a viable explanation for several macro-finance puzzles Gabaix (2008) and Wachter (2009) suggest
variable intensity versions together with recursive preferences. This not only generates a time-varying risk
premium but also increases the level of the premium. A critical view is found in Julliard and Gosh (2008).
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it even more challenging to generate sizable risk premia in production economies.

The remainder of the paper is organized as follows. Section 2 solves a version of Lucas’

fruit-tree model with exogenous, stochastic production and shows how to obtain the risk

premium from the Euler equation without explicitly studying asset prices. Section 3 studies

the effects of non-linearities on the risk premium in Merton’s neoclassical growth model (our

main economic insights are developed in Section 3.2). Section 4 concludes.

2 An endowment economy

This section illustrates our general equilibrium approach of computing the risk premium in

an endowment economy. Our objective is twofold. First, we show that the risk premium can

be obtained from the Euler equation without studying asset pricing implications. Second,

we clarify the link between the risk premium and the premium of a market portfolio over

the riskless asset in the presence of default risk and relate our results to the literature.

2.1 Lucas’ fruit-tree model with rare disasters

Consider a fruit-tree economy (one risky asset or equity), and a riskless asset with default

risk (government bond) similar to Barro (2006). One mechanism for partial default is the

depreciation of the real value of nominal debt through high inflation.

2.1.1 Description of the economy

Technology. Consider an endowment economy (Lucas, 1978). Suppose production is entirely

exogenous: no resources are utilized, and there is no possibility of affecting the output of

any unit at any time, Yt = At where At is the stochastic technology. Output is perishable.

The law of motion of At will be taken to follow a Markov process,

dAt = µAAtdt+ σAAtdBt + (eνA − 1)At−dNt. (1)

Bt is a standard Brownian motion, Nt is a Poisson process at arrival rate λ, whereas µA and

σA determine the instantaneous mean and variance of percentage changes in output in times

without jumps. The jump size is assumed to be a constant fraction, eνA − 1, of output an

instant before the jump, At−, ensuring that At does not jump to a negative value.

In this economy the bonds with default risk are issued exogenously by the government.

Suppose that the price of the government bill follows

dp0(t) = p0(t)rdt+ p0(t−)DtdNt, (2)
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where Dt is a random variable denoting a random default risk in case of a disaster, and q is

the probability of default. For illustration, we assume

Dt =

{
0 with 1− q

eκ − 1 with q
.

Ownership of fruit-trees is determined at each instant in a competitive stock market, and

the production unit has one outstanding perfectly divisible equity share. A share entitles its

owner to all of the unit’s instantaneous output in t. Shares are traded only at a competitively

determined price, pt. Suppose that the price of the risky asset follows

dpt = µptdt+ σptdBt + pt−JtdNt, (3)

where Jt is a random variable denoting the jump risk. Because prices fully reflect all available

information, r, µ, σ and Jt will be determined later in general equilibrium.

Preferences. Consider an economy with a single consumer, interpreted as a representative

“stand in” for a large number of identical consumers. The consumer maximizes expected

life-time utility discounted at the subjective rate of time preference ρ > 0,

E

∫ ∞

0

e−ρtu(Ct)dt, u′ > 0, u′′ < 0.

Assuming no dividend payments, defining Wt as real financial wealth, and letting wt denote

the fraction of wealth held in the risky asset, the budget constraint reads (cf. appendix)

dWt = ((µ− r)wtWt + rWt − Ct) dt+ wtσWtdBt + ((Jt −Dt)wt− +Dt)Wt−dNt

= (µMWt − Ct) dt+ σMWtdBt − ζM(t−)Wt−dNt, (4)

in which we define

µM ≡ (µ− r)wt + r, σM ≡ wtσ, ζM(t) ≡ (Dt − Jt)wt −Dt.

ζM(t) is the exogenous stochastic jump-size. With probability q it takes the value ζM , and

with probability 1− q the jump size is ζ0

M . One can think of the original problem as having

been reduced to a simple Ramsey problem of optimal consumption given that income is

generated by the uncertain yield of a (composite) asset (cf. Merton, 1973).

Equilibrium properties. In this economy, it is easy to determine equilibrium quantities of

consumption and asset holdings. The economy is closed and all output will be consumed,

Ct = Yt. Outstanding shares will be held by capital owners. Our objective is to relate

exogenous productivity changes to endogenous movements in asset prices, in particular we

set out to study the determinants of the risk premium.
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2.1.2 The Bellman equation and first-order condition

This section uses Bellman’s idea to solve the control problem for the representative consumer

and obtains the first-order conditions. Define the value function as

V (W0) ≡ max
{Ct}∞t=0

E0

∫ ∞

0

e−ρtu(Ct)dt, s.t. (4), W0 > 0. (5)

Choosing the control Cs ∈ R+ at time s, the Bellman equation reads

ρV (Ws) = max
Cs

{
u(Cs) + (µMWs − Cs)VW + 1

2
σ2
MW

2
s VWW

+(V ((1− ζM)Ws)q + V ((1− ζ0

M)Ws)(1− q)− V (Ws))λ
}
. (6)

Because it is a necessary condition, the first-order condition reads

VW (Ws) = u′(Cs) (7)

for any interior solution at any time s = t ∈ [0,∞).

2.1.3 The Euler equation and the implied risk premium

Using the first-order condition (7), the Euler equation is (cf. appendix)

du′(Ct) =
(
(ρ− µM + λ)u′(Ct)− σ2

MWtu
′′(Ct)CW − u′(C((1− ζM)Wt))(1− ζM)qλ

−u′(C((1− ζ0

M)Wt))(1− ζ0

M)(1− q)λ
)
dt

+πu′(Ct)dBt + (u′(C((1− ζM(t−))Wt−))− u′(C(Wt−)))dNt, (8)

which implicitly gives the optimal consumption path, where π ≡ σMWtu
′′(Ct)CW/u

′(Ct)

defines the market price of diffusion risk. Moreover, we define CW as the marginal propensity

to consume out of wealth, i.e., the slope of the consumption function. Using the inverse

function, we are able to determine the path for consumption (u′′ 6= 0).

To shed light on the effects of uncertainty, we follow a similar approach as in Steger (2005).

First, we multiply the Euler equation (8) by 1/u′(Ct). Second, we apply the expectation

operator and finally collect terms to obtain the following optimality condition,

ρ−
1

dt
E

[
du′(Ct)

u′(Ct)

]

︸ ︷︷ ︸

cost of forgone consumption

= µM − E

[

−
u′′(Ct)

u′(Ct)
CWWtσ

2
M +

u′(C((1− ζM(t))Wt))

u′(C(Wt))
ζM(t)λ

]

︸ ︷︷ ︸

certainty equivalent rate of return

.

In equilibrium, the certainty equivalent rate of return, i.e., the expected rate of return on

saving in times without jumps, µM , less the expected value of the risk premium,

RPt ≡ −
u′′(Ct)

u′(Ct)
CWWtσ

2
M + E

[
u′(C((1− ζM(t))Wt))

u′(C(Wt))
ζM(t)λ

]

, (9)
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equals expected cost of forgone consumption, i.e., the subjective rate of time preference, and

the expected rate of change of marginal utility. It denotes the percentage spread between

the certainty equivalent rate of return (or shadow risk-free rate) and the expected rate of

return of the market portfolio in times without jumps.

2.2 General equilibrium prices

This section shows that general equilibrium conditions pin down the prices in the economy.

From the Euler equation (8), we obtain

dCt =
(
(ρ− µM + λ)u′(Ct)/u

′′(Ct)− σ2
MWtCW − 1

2
σ2
MW

2
t C

2
Wu

′′′(Ct)/u
′′(Ct)

−E [u′(C((1− ζM(t))Wt))(1− ζM(t))]λ/u′′(Ct)
)
dt

+σMWtCWdBt + (C((1− ζM(t))Wt−)− C(Wt−))dNt, (10)

where we employed the inverse function g(u′(Ct)) ≡ Ct which has

g′(u′(Ct)) = 1/u′′(Ct), g′′(u′(Ct)) = −u′′′(Ct)/(u
′′(Ct))

3.

Economically, the assumption of concave utility, u′ > 0, u′′ < 0, implies risk aversion,

while convex marginal utility, u′′′ > 0, implies a positive precautionary savings motive.

Accordingly, −u′′/u′ measures absolute risk aversion, whereas −u′′′/u′′ measures the degree

of absolute prudence, i.e., the intensity of the precautionary savings motive (Kimball, 1990).

Because output is perishable, using the market clearing condition Yt = Ct = At gives

dCt = µACtdt+ σACtdBt + (eνA − 1)Ct−dNt. (11)

Thus, the general equilibrium approach pins down asset prices as follows. Defining optimal

jump in consumption as C̃(Wt) ≡ C((1 − ζM(t))Wt)/C(Wt), market clearing requires the

percentage jump in aggregate consumption to match the disaster size, eνA − 1 = C̃(Wt)− 1,

which implies a constant jump term. For example, if consumption is linearly homogeneous

in wealth (as shown for CRRA preferences below), the jump of the asset price satisfies8

C((1− ζM(t))Wt−)/C(Wt−) = 1− ζM(t) ⇒ ζM = ζ0

M = 1− eνA . (12)

Similarly, the market clearing condition pins down

µM−r = −
u′′(Ct)C

2
t

u′(Ct)CWWt

σ2
A−

u′(eνAC(Wt))

u′(C(Wt))
((1− eκ)q + eνA − 1)λ, σM =

Ct
CWWt

σA, (13)

8Conditioning on no default, (ζM (t)|Dt = 0) = ζ0

M
gives eνA −1 = −ζ0

M
, whereas conditioning on default,

(ζM (t)|Dt = eκ − 1) = ζM demands eνA − 1 = −ζM .
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in which

r = ρ−
u′′(Ct)Ct
u′(Ct)

µA − 1
2

u′′′(Ct)C
2
t

u′(Ct)
σ2
A + λ− (1− (1− eκ)q)

u′(eνACt)

u′(Ct)
λ. (14)

As a result, the higher the subjective rate of time preference, ρ, the higher is the general

equilibrium interest rate which induces individuals to defer consumption (cf. Breeden, 1986).

For convex marginal utility (decreasing absolute risk aversion), u′′′ > 0, a lower conditional

variance of dividend growth, σ2
A, a higher conditional mean of dividend growth, µA, and a

higher default probability, q, decrease the bond price and increase the interest rate.

2.3 Components of the risk premium

Observe that the risk premium (9) in general equilibrium simplifies to

RPt = −
u′′(Ct)

u′(Ct)
CWWtσ

2
M

︸ ︷︷ ︸

diffusion risk

+
u′(eνAC(Wt))

u′(C(Wt))
ζMλ

︸ ︷︷ ︸

total jump risk

, (15)

whereas the market premium from (13), i.e., the premium of the expected rate of return on

the market portfolio conditional on no disasters, in general equilibrium reads

µM − r = −
u′′(Ct)CWWt

u′(C(Wt))
σ2
M

︸ ︷︷ ︸

diffusion risk

+(ζM − (1− eκ)q)
u′(eνAC(Wt))

u′(C(Wt))
λ

︸ ︷︷ ︸

disaster risk

= −
u′′(Ct)CWWt

u′(C(Wt))
σ2
M

︸ ︷︷ ︸

diffusion risk

+
u′(eνAC(Ws))

u′(C(Wt))
ζMλ

︸ ︷︷ ︸

total jump risk

− (1− eκ) q
u′(eνAC(Wt))

u′(C(Wt))
λ

︸ ︷︷ ︸

default risk

. (16)

Note that one would expect νA < 0 and κ < 0 for a ‘disaster’ hypothesis.

In the presence of default risk, the market premium differs from the risk premium. The

obvious reason is that we obtain the risk premium from the certainty equivalent rate of

return. In contrast, the government bill has a risk of default which is not rewarded in the

market premium, but it is reflected in the risk premium. If there was no default risk, the

risk premium would have the usual interpretation of the market premium.

2.4 Analytical results

As shown in Merton (1971), the standard dynamic consumption and portfolio selection

problem has explicit solutions where consumption is a linear function of wealth. For later

reference, we provide the solution for constant relative risk aversion (CRRA).
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Proposition 2.1 (CRRA preferences) If utility exhibits constant relative risk aversion,

i.e., u(Ct) = C1−θ
t /(1 − θ), optimal consumption is linear in wealth, Ct = C(Wt) = bWt,

where the marginal propensity to consume out of wealth is

b ≡
(
ρ+ λ− (1− θ)µM − (1− ζM)1−θλ+ (1− θ)θ 1

2
σ2
M

)
/θ.

The effective risk aversion is constant, −VWW (Wt)Wt/VW (Wt) = θ.

Proof. see Appendix A.1.3

Corollary 2.2 Use the consumption function, Ct = C(Wt) = bWt, and (16) to obtain

µM − r = θσ2
M + e−θνAζMλ− e−θνA (1− eκ) qλ. (17)

Similarly, the general equilibrium conditions pin down the jump size in (12), ζM = 1− eνA,

the variance in (13), σM = σA, and the face rate of the government bill in (14) as

r = ρ+ θµA − 1
2
θ(1 + θ)σ2

A + λ− (1− (1− eκ)q) e−θνAλ.

Corollary 2.3 Use the consumption function, Ct = C(Wt) = bWt, and the risk premium in

general equilibrium (15), to obtain

RP = θσ2
A

︸︷︷︸

diffusion risk

+ e−θνA(1− eνA)λ
︸ ︷︷ ︸

total jump risk

= µM − r + e−θνA(1− eκ)qλ
︸ ︷︷ ︸

default risk

. (18)

Hence, the risk premium indeed refers to the rewards that investors demand for bearing

the systematic market risk over a riskless alternative (or the ‘shadow’ risk-free rate in cases

such a riskless alternative does not exist). Two results are important. Our first result is

that the risk premium can be obtained directly from the Euler equation in (9) without

studying asset prices (as in Section 2.2). Second, the risk premium in (18) is constant and

its determinants are (effective) risk aversion and consumption volatility.

Similar to Barro (2006), the premium for diffusion risk θσ2
A increases by the total jump

risk e−θνA(1− eνA)λ. The intuition of why rare events may solve the risk premium puzzle is

as follows. Even for logarithmic utility, θ = 1, and for low-probability events, λ = 1%, the

premium for the jump risk in percentage points, e−νA − 1, can be very large. For the case of

‘disasters’ one would expect νA to be negative. The more negative the parameter, the more

severe is the disaster and νA → −∞ denotes complete destruction.

As we show below, the reason why the risk premium is constant is that the consumption

function is homogeneous (of degree k = 1), which implies that the effective risk aversion is

constant. A time-varying disaster size and/or arrival rate (i.e., stochastic volatility) would

imply both a time-varying and a larger risk premium (cf. Gabaix, 2008; Wachter, 2009).
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3 A neoclassical production economy

This section illustrates that non-linearities in a neoclassical DSGE model imply interesting

asset market implications. In particular they can generate a time-varying and asymmetric

risk premium. We use a version of Merton’s (1975) asymptotic theory of growth under

uncertainty and compare our results to the reference case of an endowment economy.

3.1 A model of growth under uncertainty

This section assumes that there is no riskless asset. We use the certainty equivalent rate of

return (or shadow risk-free rate) to obtain the risk premium from the Euler equation.

3.1.1 Description of the economy

Technology. At any time, the economy has some amounts of capital, hours, and knowl-

edge, and these are combined to produce output. The production function is a constant

return to scale technology Yt = AtF (Kt, Ht), where Kt is the aggregate capital stock, Ht is

hours worked as a fraction of total hours, and At is the stock of knowledge or total factor

productivity (TFP), which in turn is driven by a standard Brownian motion Bt,

dAt = µAAtdt+ σAAtdBt. (19)

In contrast to the endowment economy ownership of At is not determined in a competitive

stock market. Each firm has free access to the stock of knowledge.

The physical capital stock increases if gross investment exceeds capital depreciation,

dKt = (It − δKt)dt+ σKKtdZt + (eνK − 1)Kt−dNt, (20)

where Zt is a standard Brownian motion (uncorrelated with Bt), and Nt is a standard Poisson

process with arrival rate λ. Unlike in Merton’s (1975) model, the assumption of stochastic

depreciation introduces instantaneous riskiness indeed making physical capital a risky asset.

The fundamental difference to Lucas’ endowment economy is that the outstanding equity

shares follow a stochastic process, i.e., the number of trees is stochastic. An endowment

economy would be obtained for F (Kt, Ht) ≡ 1.

Preferences. Consider an economy with a single consumer, interpreted as a representative

“stand in” for a large number of identical consumers. The consumer seeks to maximize

E0

∫ ∞

0

e−ρtu(Ct, Ht)dt, uC > 0, uH ≤ 0, uCC ≤ 0, uCCuHH − (uCH)
2 ≥ 0, (21)

subject to

dWt = ((rt − δ)Wt +Htw
H
t − Ct)dt+ σKWtdZt + (eνK − 1)Wt−dNt. (22)
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Wt ≡ Kt denotes individual wealth, rt is the rental rate of capital, and Htw
H
t is labor income.

The paths of factor rewards are taken as given by the representative consumer. For later

reference, we define the savings rate s(rt, w
H
t , Ct, Ht,Wt) ≡ (1− Ct)/(rtWt +Htw

H
t ).

Equilibrium properties. In equilibrium, factors of production are rewarded with value

marginal products, rt = YK and wHt = YH . The goods market clearing condition demands

Yt = Ct + It. (23)

Solving the model requires the aggregate accumulation constraints (19) and (20), the

goods market equilibrium (23), equilibrium factor rewards of competitive firms, and the

first-order condition for consumption and hours. It gives a system of equations which, given

initial conditions, determines the paths of Kt, Yt, rt, w
H
t , Ct and Ht, respectively.

3.1.2 The Bellman equation and first-order conditions

Define the value function as

V (W0, A0) = max
{Ct,Ht}∞t=0

E0

∫ ∞

0

e−ρtu(Ct, Ht)dt s.t. (22), (19), W0, A0 > 0, (24)

denoting the present value of expected utility along the optimal program. As shown in the

appendix, the Bellman equation for this problem reads

ρV (Ws, As) = max
Cs,Hs

{
u(Cs, Hs) + ((rs − δ)Ws +Hsw

H
s − Cs)VW

+1
2

(
VAAσ

2
AA

2
s + VWWσ

2
KW

2
s

)
+ VAµAAs + [V (eνKWs, As)− V (Ws, As)]λ

}

for any s ∈ [0,∞). Hence, the first-order conditions for any interior solution are

uC(Ct, Ht) = VW (Wt, At), (25)

−uH(Ct, Ht) = wHt VW (Wt, At), (26)

for any t ∈ [0,∞), making optimal consumption and hours functions of the state variables

Ct = C(Wt, At) and Ht = H(Wt, At), respectively. Both intertemporal and intra-temporal

first-order conditions (25) and (26) pin down the opportunity cost of leisure,

wHt = −
uH(Ct, Ht)

uC(Ct, Ht)
, uH 6= 0. (27)

For utility functions with uH = 0, the household optimally supplies total hours to production,

H = 1. In this case the optimality condition reduces to (25). Allowing the labor-leisure

choice to be endogenous, however, has potentially important asset pricing implications.9

9Bodie, Merton and Samuelson (1992) show that the individual’s human capital, which essentially is the
same as a financial asset except that it is not traded, is valued by the individual as if it were a traded asset.
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3.1.3 The Euler equation and the implied risk premium

After some algebra the Euler equation for consumption is (cf. appendix)

duC = (ρ− (rt − δ) + λ)uCdt− uC(C(e
νKWt, At), H(eνKWt, At))e

νKλdt

−σ2
K (uCC(Ct, Ht)CW + uCH(Ct, Ht)HW )Wtdt

+(CAAtσAdBt + CWWtσKdZt)uCC + (HAAtσAdBt +HWWtσKdZt)uCH

+

[
uC(C(e

νKWt−, At−), H(eνKWt−, At−))

uC(C(Wt−, At−), H(Wt−, At−))
− 1

]

uC(Ct−, Ht−)dNt, (28)

which implicitly determines the optimal consumption path. In order to shed some light on

the effects of uncertainty in this economy, we rewrite the Euler equation and obtain

ρ−
1

dt
E

[
duC(Ct, Ht)

uC(Ct, Ht)

]

= E(rt − δ)− E

[

−
uCC(Ct, Ht)CW + uCH(Ct, Ht)HW

uC(Ct, Ht)
Wtσ

2
K

]

−E

[
uC(C(e

νKWt, At), H(eνKWt, At))

uC(C(Wt, At), H(Wt, At))
(1− eνK )λ

]

.

Similar to the endowment economy, the left-hand side equals the cost of forgone consumption,

which in equilibrium equals the certainty equivalent return on saving on the right-hand side,

i.e., the expected net return on assets minus the risk premium,

RPt ≡ −
uCCCW + uCHHW

uC(Ct, Ht)
Wtσ

2
K +

uC(C(e
νKWt, At), H(eνKWt, At))

uC(C(Wt, At), H(Wt, At))
(1− eνK )λ. (29)

It is remarkable that the structure is equivalent to the endowment economy (15). The most

obvious result is that the risk premium indeed refers to the rewards that investors demand for

bearing the systematic risk, while it does not directly account for the risk of a stochastically

changing total factor productivity (19).

3.2 Analytical results

In order to shed light on the properties of the risk premium (29) in DSGE models, this

section makes specific assumptions about the functional forms for the production side and

household’s preferences. In what follows, we consider the class of utility functions which

exhibits CRRA with respect to gambles in both consumption and leisure,

u(Ct, Ht) =
(Ct(1−Ht)

ψ)1−θ

1− θ
, θ > 0, ψ ≥ 0. (30)

Similar to Turnovsky and Smith (2006), the parameter ψ measures the preference for leisure.

To ensure concavity, we restrict θ − (1 − θ)ψ ≥ 0 which is the consumption-leisure-based

measure of relative risk aversion (cf. Swanson, 2010). For the case of ψ = 0, the utility

function (30) reduces to the standard CRRA utility framework.

12



As a result, the risk premium in the production economy in (29) reads

RPt = θ
CW (Wt, At)

C(Wt, At)
Wtσ

2
K − (1− θ)

HW (Wt, At)

1−H(Wt, At)
Wtσ

2
K

+
C(eνKWt, At)

−θ(1−H(eνKWt, At))
ψ(1−θ)

C(Wt, At)−θ(1−H(Wt, At))ψ(1−θ)
(1− eνK )λ. (31)

Below we show that both the consumption function Ct = C(At,Wt) and optimal hours

Ht = H(At,Wt) as a function of the state variables are available in closed form for parametric

restrictions. This in turn gives closed-form expressions for the risk premium in (31).

Proposition 3.1 (linear-consumption-rule) Suppose the production function is of the

type Cobb-Douglas, Yt = AtK
α
t H

1−α
t and there is no disutility from labor supply, ψ = 0. For

the case where α = θ, optimal consumption is linear in wealth,

Ct = C(Wt) = φWt, H = 1, (32)

where φ ≡ (ρ− (e(1−θ)νK − 1)λ+ (1− θ)δ)/θ + 1
2
(1− θ)σ2

K .

The effective risk aversion is constant, −VWW (Wt)Wt/VW (Wt) = θ.

Proof. see Appendix A.2.2

Corollary 3.2 Using the consumption function and optimal hours in (32) and (31),

RP = θσ2
K + e−θνK (1− eνK )λ. (33)

Proposition 3.3 (constant-saving-function) Suppose the production function is of the

type Cobb-Douglas, Yt = AtK
α
t H

1−α
t . The knife-edge value

ρ̄ ≡ (eνK(1−αθ) − 1)λ− (1− αθ)δ − θµA + 1
2

(
θ(1 + θ)σ2

A − αθ(1− αθ)σ2
K

)
, (34)

determines the shape of optimal hours as a function of the state variables. For the case where

ρ = ρ̄, optimal consumption is proportional to income, and optimal hours are constant,

Ct =
θ − 1

θ
AtW

α
t H

1−α, H =
θ(1− α)

θ(1− α)− ψ(1− θ)
θ > 1. (35)

The effective risk aversion is constant, −VWW (Wt)Wt/VW (Wt) = αθ.

Proof. see Appendix A.2.3

Corollary 3.4 Using the consumption function and optimal hours in (35) and (31),

RP = αθσ2
K + e−αθνK (1− eνK )λ. (36)

The closed-form expressions for the risk premium in (33) and (36) hold our main results.
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3.2.1 Discussion of the analytical results

Our first result is that the risk premium in DSGE models depends on the curvature of

the consumption function. To make our point more explicit, suppose that labor supply is

constant (either for ψ = 0 or as shown above ρ = ρ̄). In fact, any homogenous function,

where CW (Wt, At)Wt = kC(Wt, At) or equivalently C(cWt, At) = ckC(Wt, At) for c, k ∈ R+,

implies a constant risk premium in (29). Technically, the consumption function needs to be

homogenous of degree k in wealth. This leads us to our second result because we are now in a

position to understand why the risk premium in DSGE models generally has a time-varying

property. Because homogenous functions are obtained only for knife-edge restrictions, the

risk premium generally will be dependent on wealth which in turn implies a time-varying

behavior and predictability since wealth is changing stochastically. The bottom line is that

the non-linearity of the production function generally implies non-homogeneous consumption

functions and thus generates a time-varying risk premium.

Economically, the reason why the risk premium depends on the curvature of the con-

sumption function (and can vary over time) is that the optimal response to disasters or

shocks will depend on the level of wealth. An individual with high levels of financial wealth

will adjust his or her optimal consumption differently than an individual with no financial

wealth. Though the direct utility function has CRRA with respect to consumption, the indi-

rect utility function (i.e., the value function) does not exhibit CRRA with respect to wealth

except for the knife-edge cases above. This finding is closely related to the link between

the marginal propensity to consume and the effective risk aversion of the value function: a

higher marginal propensity to consume out of gross wealth (inclusive of labor income) raises

the effective risk aversion by raising the consumption covariance from a given financial risk

(Carroll and Kimball, 1996, p.982).10 In other words, if the marginal propensity to consume

falls more quickly with wealth than it would for a constant savings rate, then the effective

risk aversion of the value function will be lower at higher levels of wealth.

Given our discussion above, we are now in a position to understand why the technique

of log-linearizing all relevant equations following Campbell (1994) implies a constant risk

premium (cf. Lettau, 2003). In fact, this approach gives the endogenous variables (in logs)

as a linear function of the state variables (in logs) which makes the consumption function

homogeneous in the state variables. So what are we missing by using a log-linear solution?

As discussed above, a homogeneous consumption function implies a constant risk premium.

However, the risk premium implied by the exact solution, except in our knife-edge cases,

10Our consumption function refers to financial wealth (exclusive of labor income), while previous work
refers to gross wealth or total wealth (i.e., financial and human wealth). Carroll and Kimball’s result is
based on a partial equilibrium model leaving the processes for labor income and capital returns exogenous.
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exhibits time-varying and asymmetric behavior due to changes in effective risk aversion. Thus

by using log-linear approximations the researcher overlooks potentially important properties

of the risk premium implied by the neoclassical production economy.

Unfortunately, an analytical study of the risk premium without parametric restrictions is

not possible. Though clearly being knife-edge cases, our explicit solutions are important in

order to understand the determinants of the risk premium in DSGE models. Both analytical

solutions imply that the consumption function is homogenous in wealth and optimal hours

are constant, which in turn implies a constant risk premium (cf. Figure 1).11 Below we study

the implications of allowing the parameters to take different values.

3.3 Numerical results

This section uses numerical solutions in order to illustrate our third result on the asymmetry

of the risk-premium over the business cycle for the case of a non-linear production function.

For illustration, we consider the case where σK = σA = µA = 0 and the production is of the

type Cobb-Douglas, Yt = AKα
t H

1−α
t with A = 1. The parametric assumptions do not affect

our conclusions but substantially reduce the computational burden.

3.3.1 The risk premium with inelastic labor supply (ψ = 0)

Consider the case of inelastic labor supply by assuming uH = 0, which eases interpretation

and simplifies notation. We refer to the numerical results where uH 6= 0 in Section 3.3.3.

From the Euler equation (28), the reduced form representing the dynamics of the DSGE

model can be summarized by a system of two stochastic differential equations (SDEs) as

dWt = ((rt − δ)Wt + wHt − Ct)dt− (1− eνK )Wt−dNt,

dCt = −
uC(Ct)

uCC(Ct)
(rt − δ − ρ− λ)dt−

uC(C(e
νKWt))

uCC(C(Wt))
eνKλdt+ [C(eνKWt−)− C(Wt−)]dNt,

where rt = YK and wHt = YH , augmented by boundary conditions for the beginning and

the end of the time horizon. This problem can be solved using the Waveform relaxation

algorithm proposed in Posch and Trimborn (2010).

For later reference, because uH = 0 (in particular ψ = 0), we are studying the case of

CRRA preferences with relative risk aversion θ, and from (31) the risk premium reads

RPt =
C(eνKWt)

−θ

C(Wt)−θ
(1− eνK )λ. (37)

11For α = θ and ψ = 0, the consumption function becomes a linear function in wealth, i.e., it is linearly
homogeneous or homogeneous of degree one. In the case of ρ = ρ̄, which is only possible for values θ > 1,
the consumption function becomes homogeneous of degree α.
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The numerical solution to the non-linear system of stochastic differential equations is the

consumption function, Ct = C(Wt), which is obtained from the optimal paths of control and

state variables computed for the complete state space Wt ∈ R+. In particular our procedure

does not rely on local approximation methods, but directly solves the non-linear system

globally (cf. Posch and Trimborn, 2010). According to (37), we obtain the risk premium by

evaluating the consumption function at two points in the state space.

Figure 1 shows the optimal consumption function and the resulting risk premium (37)

for different values for the parameter of relative risk aversion θ.

3.3.2 Discussion of the numerical results

For θ = α the consumption function in Figure 1 is linearly homogenous (dotted) with slope

φ which corresponds to the analytical solution in (32). In this singular case the risk premium

is e−θνK (1 − eνK )λ, which is equivalent to the endowment economy. At each point in time,

the expected proportional change in marginal utility equals the expected change in capital

rewards which implies a constant risk premium in (37). For θ < α the consumption function

is convex, and the marginal propensity to consume increases with wealth, C(eνKWt) <

eνKC(Wt). This increase is less rapid than the increase of the consumption-wealth ratio,

which lowers the effective risk aversion. Hence, the risk premium is convex and has the upper

bound e−ανK (1−eνK )λ for wealth approaching zero. For θ > α, which is the empirically most

plausible scenario, the consumption function has the standard form, i.e., strictly concave and

the marginal propensity to consume is decreasing with wealth, C(eνKWt) > eνKC(Wt). In

this case, the properties of the risk premium (37) depend on whether the subjective rate of

time preference ρ exceeds or falls short of the knife-edge value ρ̄ in (34).

At the knife-edge value of ρ = ρ̄ the consumption function is homogeneous of degree α

which refers to the analytical solution in (35) with constant savings rate, s = 1/θ, and the

risk premium is e−αθνK (1 − eνK )λ. For ρ < ρ̄ the individual prefers a higher savings rate,

s(Wt) > s, and the marginal propensity to consume falls more quickly with wealth than it

would for a constant savings rate (or consumption-income ratio) which lowers effective risk

aversion at higher levels of wealth. Because s(Wt) is increasing in wealth and bounded by

unity, s < s(Wt) < 1, the risk premium is convex and has the upper bound e−αθνK (1− eνK )λ

for wealth approaching zero. Similarly, for ρ > ρ̄ the savings rate is smaller, s(Wt) < s,

and the marginal propensity to consume falls less quickly in wealth than for a constant

savings rate, which raises the effective risk aversion at higher levels of wealth. As s(Wt) is

decreasing in wealth, the risk premium in (37) is concave with lower bound e−θανK (1−eνK )λ

for sufficiently risk averse individuals, θ ≥ 1. Otherwise the substitution effect dominates the

precautionary savings effect which depresses savings and increases the marginal propensity
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Figure 1: Risk premia in a production economy
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Notes: These figures illustrate optimal consumption (left panel) and the risk premium (right panel) as functions of wealth
(◦ are steady-state values) for different levels of relative risk aversion and σK = σA = µA = 0. The calibration of other
parameters is (ρ, α, θ, δ, λ, 1 − eνK , ψ) = (0.05, 0.75, ·, 0.1, 0.017, 0.4, 0); where θ = 0.5 (dotdash), θ = 0.75 (dotted), θ = 1
(longdash), θ = 1.9406 (twodash) which refers to the knife-edge case ρ = ρ̄ in (34), θ = 4 (dashed), and θ = 6 (solid).

to consume (Weil, 1990). Since the consumption function is concave for θ > α due to the

non-linear production function, effective risk aversion remains higher than for θ = α, such

that the lower bound is e−max(θ,1)ανK (1− eνK )λ for wealth approaching zero.

In our numerical study ρ̄ depends on the arrival rate, λ, the disaster size, eνK − 1, the

output elasticity of capital, α, and the risk aversion, θ, which coincides with the inverse of

the intertemporal elasticity of substitution (IES), and the rate of depreciation, δ. For the

case αθ > 1, which is when the output elasticity of capital exceeds the IES, this critical value

is positive, ρ̄ > 0, and vice versa. For the empirically most plausible calibrations, e.g., for

α ≈ 0.33 and θ ≈ 4, we have αθ > 1 and obtain a positive knife-edge value, ρ̄ > 0.

Our numerical study of the risk premium yields our three results. For the empirically

most plausible scenarios, we confirm our analytical result that (i) the risk premium depends

on wealth and thus will be time-varying over the business cycle. In prosperous states of the

economy with higher transitional growth rates (capital scarcity), the risk premium is higher

than in periods with lower - or even negative - growth rates (capital abundance). In other

words, after a disaster the risk premium jumps to a higher value as capital stock is destroyed,

and then subsequently return to lower values as more capital is accumulated, which implies

(ii) a predictable component (cf. Campbell and Cochrane, 1999). Finally, we find that the
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response of the risk premium is (iii) asymmetric: the increase after a negative shock is larger

than the decrease after a positive shock with the same size.

Allowing for (Gaussian) stochastic depreciation, σK > 0, and/or a second state variable

in the form of time-varying TFP, µA 6= 0, σA > 0, the risk premium can be obtained from

(31), and the same analysis could be conducted. The consumption function is concave in

wealth for θ ≥ α and the risk premium, conditional on At, has the same properties as in

Figure 1. However, there are three main differences. First, since the individual is willing to

hedge against the diffusion risk (stochastic investment opportunities), the risk premium will

be slightly higher.12 Second, the risk premium in general also depends indirectly on TFP

through the optimal consumption function, Ct = C(Kt, At). Third, the knife-edge value ρ̄ as

from (34) decreases in the mean, µA, but increases in the variance σ2
A of TFP growth. For

the case αθ > 1 it increases in the variance of stochastic depreciation, σ2
K .

3.3.3 The role of elastic labor supply (ψ > 0)

This section allows for elastic labor supply in the neoclassical DSGE model. Our objective

is to study how the properties of the risk premium is affected by the ability of individuals

to buffer risk through their labor-leisure choice for uH 6= 0, in particular ψ > 0.13

In the general case where ψ > 0, the reduced-form dynamics can be summarized by the

budget constraint (22) and Euler equations for both consumption and hours. In fact, the

condition (27) can be used to relate optimal consumption as a function of hours and state

variables which reduces the dimensionality of the problem. Observe that (27) implies

1−H(Wt) =
ψ

1− α

C(Wt)H(Wt)
α

W α
t

. (38)

Because (38) needs to hold for any levels of wealth, in particular for eνKWt, this optimality

condition pins down the optimal jump terms for consumption and hours as

C̃(Wt) =
1− H̃(Wt)H(Wt)

1−H(Wt)
H̃(Wt)

−αeανK , (39)

in which C̃(Wt) ≡ C(eνKWt)/C(Wt) and H̃(Wt) ≡ H(eνKWt)/H(Wt). Hence, 1 − C̃(Wt)

denotes the percentage drop of optimal consumption after a disaster. As a result, we can

neglect the Euler equation for consumption since technically (38) and (39) give consumption

as functions of optimal hours and wealth, C(Wt) = C(H(Wt),Wt) and C̃(Wt) = C̃(H(Wt)).

Economically, optimal behavior of consumption is described completely by optimal hours

and wealth through the intra-temporal optimality condition (27).

12Since the diffusion risk is of less importance, this effect is negligible (cf. Tables A.1 and A.2).
13It is well known that labor flexibility introduces an additional margin along which an individual can

buffer risk (Turnovsky and Bianconi, 2005, p.325).
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As shown in the appendix, for 0 < Ht < 1 the reduced form can be summarized as

dHt =
ρ− (1− θ)rt + (1− αθ)δ + λ− αθCt/Wt

αθH−1
t − (ψ − θψ − θ)(1−Ht)−1

dt

−
C̃(Wt)

−θ+(1−θ)ψH̃(Wt)
(1−θ)ψαeνK−(1−θ)ψανKλ

αθH−1
t − (ψ − θψ − θ)(1−Ht)−1

dt+ (H(eνKWt−)−H(Wt−))dNt,

dWt = ((rt − δ)Wt +Htw
H
t − Ct)dt− (1− eνK )Wt−dNt,

which we use for our numerical results. Finally, the risk premium (31) is obtained from

RPt = C̃(Wt)
(1−θ)ψ−θH̃(Wt)

(1−θ)ψαe−(1−θ)ψανK (1− eνK )λ. (40)

Our analytical results suggest that even for ψ > 0 our insights about the properties of

the risk premium do not change for the particular rate of time preference ρ̄ in (34). Clearly,

ρ = ρ̄ is a knife-edge condition which ensures that optimal hours in (35), H(Wt) = H and

the savings rate s = 1/θ are constant, and the risk premium is e−αθνK (1 − eνK )λ. In this

singular case, the parameter measuring the preference for leisure, ψ, does not affect the risk

premium or the savings rate, though it affects the fraction of hours supplied to production.

As it turns out, the qualitative properties of the risk premium are generally unaffected by

the presence of elastic labor supply, though the quantitative results change slightly.

Our numerical results can be summarized by plotting the consumption function, optimal

hours, and the risk premium as functions of financial wealth (cf. Figures A.1 and A.2). In

what follows, we restrict our discussion to the empirically most relevant case where θ ≥ 1.

For ρ < ρ̄ the individual prefers a higher savings rate, s(Wt) > s, and supplies more

hours, H(Wt) > H. Both the consumption function and optimal hours are concave, while

the risk premium is convex in wealth and has the upper bound e−αθνK (1− eνK )λ for wealth

approaching zero. For ρ > ρ̄ the savings rate is lower, s(Wt) < s, the individual supplies less

hours, H(Wt) < H, and the risk premium is concave with lower bound e−θανK (1− eνK )λ.

An empirically testable implication is the correlation between hours and consumption. In

the data, hours and consumption are positively correlated which in turn implies a negative

correlation between consumption and leisure (cf. Lettau and Uhlig, 2000). We may infer

this property directly from the consumption function and optimal hours. For ρ = ρ̄ there is

zero correlation, while for ρ < ρ̄ consumption and hours are concave functions of financial

wealth (or capital stock per effective worker). This implies a positive correlation since

wealth is changing stochastically. It is only for ρ > ρ̄ that optimal hours are convex in

financial wealth. In turn this implies a counterfactual negative correlation for any concave

consumption function. Thus, the empirically most plausible case ρ < ρ̄ implies strictly

concave functions for both consumption and hours as well as time-varying and asymmetric

risk premia similar to the benchmark case of constant labor supply ψ = 0.
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In summary, the extension to endogenous labor supply is able to generate empirically

plausible correlations for consumption and leisure. Though our main results on the shape

and the time-varying property of the risk premium are not affected, the ability to buffer

risk through the labor-leisure choice makes it even more challenging to generate sizable risk

premia in production economies. One interesting extension of this framework could therefore

examine the role of other sources of non-linearities such as capital adjustment cost and/or

habit formation which affect effective risk aversion and thus the risk premium.

4 Conclusion

In this paper we study how non-linearities affect asset pricing implications in a production

economy. We derive closed-form solutions of the Lucas’ fruit-tree model and compare the

resulting risk premium to those obtained from a model with non-linearities in the form of

a neoclassical production function. For this purpose, we formulate our DSGE models in

continuous time to obtain analytical solutions, which are important knife-edge cases for

numerical work. Our key result is that these non-linearities can generate time-varying,

asymmetric risk premia and predictability over the business cycle. The economic intuition

is that the individual’s effective risk aversion, except for singular cases, is not constant in a

neoclassical production economy. We show that non-normalities in the form of rare disasters

substantially increase the economic relevance of these (empirical) key features.

From a methodological point of view, this paper shows that formulating the endowment

economy or non-trivial production models in continuous time gives analytical solutions for

reasonable parametric restrictions or functional forms. Analytical solutions are useful for

macro-finance models for at least two reasons. First, they are points of reference from which

numerical methods can be used to explore a broader class of models. Second, they shed light

on asset market implications without relying purely on numerical methods. This circumvents

problems induced by approximation schemes which could be detrimental when studying the

effects of uncertainty. Along these lines, we propose the continuous-time formulation of

DSGE models as a workable paradigm in macro-finance.
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A Appendix

A.1 Lucas’ fruit-tree model with rare disasters

A.1.1 Deriving the budget constraint

Consider a portfolio strategy which holds nt units of the risky asset and n0(t) units of the

riskless asset with default risk, such that Wt = n0(t)p0(t) + ptnt denotes the portfolio value.

24



Using Itô’s formula, it follows that

dWt = p0(t)dn0(t) + n0(t)p0(t)rdt+ ptdnt + wtµWtdt+ wtσWdBt

+(wt−Jt + (1− wt−)Dt)Wt−dNt,

where wtWt ≡ ntpt denotes the amount invested in the risky asset. Since investors use their

savings to accumulate assets, assuming no dividend payments, p0(t)dn0(t) + ptdnt = −Ctdt,

dWt = ((µ− r)wtWt + rWt − Ct) dt+ σwtWtdBt + ((Jt −Dt)wt− +Dt)Wt−dNt.

where Jt is the jump size of the risky asset, which with probability q takes the value eν2 − 1

(no default) and with probability 1− q the jump size is eν1 − 1 (default).

A.1.2 The Bellman equation and the Euler equation

As a necessary condition for optimality the Bellman’s principle gives at time s

ρV (Ws) = max
(ws,Cs)

{

u(Cs) +
1

dt
EsdV (Ws)

}

. (41)

Using Itô’s formula (see e.g. Sennewald, 2007),

dV (Ws) =
(
(µMWs − Cs)VW + 1

2
σ2
MW

2
s VWW

)
dt+ σMWsVWdBt + (V (Ws)− V (Ws−))dNt

=
(
(µMWs − Cs)VW + 1

2
σ2
MW

2
s VWW

)
dt+ σMWsVWdBt

+(V ((1− ζM(t−))Ws−)− V (Ws−))dNt,

If we apply the expectation operator to the integral form, and use the property of stochastic

integrals, we may write using ζM ≡ E(ζM(t)|Dt = eκ − 1) = 1 − eκ − (eν1 − eκ)w (default)

and ζ0

M ≡ E(ζM(t)|Dt = 0) = (1− eν2)w (no default),

EsdV (Ws) =
(
(µMWs − Cs)VW + 1

2
σ2
MW

2
s VWW

+(V ((1− ζM)Ws)q + V ((1− ζ0

M)Ws)(1− q)− V (Ws))λ
)
dt.

Inserting into (41) gives the Bellman equation

ρV (Ws) = max
(ws,Cs)

{
u(Cs) + (µMWs − Cs)VW + 1

2
σ2
MW

2
s VWW

+(V ((1− ζM)Ws)q + V ((1− ζ0

M)Ws)(1− q)− V (Ws))λ
}
.

Because it is a necessary condition, the first-order conditions are

0 = u′(Cs)− VW ⇒ VW = u′(Cs), (42)

0 = (µ− r)WsVW + wsσ
2W 2

s VWW + VW ((eκ + (eν1 − eκ)ws)Ws)(e
ν1 − eκ)Wsqλ

+VW ((1 + (eν2 − 1)ws)Ws)(1− q)(eν2 − 1)Wsλ (43)
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for any interior solution at any time s = t ∈ [0,∞).

Observe that (43) implies the optimal weight of the risky asset independent of the optimal

consumption choice. We use this separation result throughout the paper by focusing on the

consumption problem, given that income is generated by the uncertain yield of a (composite)

asset, i.e., the optimal market portfolio (cf. also Merton, 1973).

The first-order condition (42) makes consumption a function of the state variable. Using

the maximized Bellman equation for all s = t ∈ [0,∞),

ρV (Wt) = u(C(Wt)) + (µMWt − C(Wt))VW + 1
2
σ2
MW

2
t VWW

+(V ((1− ζM)Wt)q + V ((1− ζ0

M)Ws)(1− q)− V (Wt))λ.

Use the envelope theorem to compute the costate

ρVW = (µMVW + (µMWt − C(Wt))VWW + σ2
MWtVWW + 1

2
σ2
MW

2
t VWWW

+(VW ((1− ζM)Wt)(1− ζM)q + VW ((1− ζ0

M)Ws)(1− ζ0

M)(1− q)− VW (Wt))λ.

Collecting terms, we obtain

(ρ− µM + λ)VW = (µMWt − C(Wt))VWW + σ2
MWtVWW + 1

2
σ2
MW

2
t VWWW

+(VW ((1− ζM)Wt)(1− ζM)q + VW ((1− ζ0

M)Ws)(1− ζ0

M)(1− q))λ. (44)

Using Itô’s formula, the costate obeys

dVW (Wt) = (µMWt − Ct)VWWdt+
1
2
σ2
MW

2
t VWWWdt+ σMWtVWWdBt

+(VW ((1− ζM(t−))Wt−)− VW (Wt−))dNt

=
(
(ρ− µM + λ)VW − σ2

MWtVWW − VW ((1− ζM)Wt)(1− ζM)qλ

−VW ((1− ζ0

M)Ws)(1− ζ0

M)(1− q)λ
)
dt

+σMWtVWWdBt + (VW ((1− ζM(t−))Wt−)− VW (Wt−))dNt,

where we inserted the costate from (44). As a final step we insert the first-order condition

and obtain the Euler equation (8).

A.1.3 Proof of Proposition 2.1

The idea of this proof is to show that using an educated guess of the value function, the

maximized Bellman equation and the first-order condition (7) are both fulfilled. For constant

relative risk aversion, θ, the utility function has the form

u(Ct) = C1
C1−θ
t

1− θ
+ C2, θ > 0, (C1,C2) ∈ R+ × R. (45)
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From (6), we obtain the maximized Bellman equation using the functional equation for

consumption from the condition (7), i.e., C(Wt) = C
1/θ
1 V

−1/θ
W . We use the educated guess

V̄ = C0C1
W 1−θ
t

1− θ
+ C2/ρ, (46)

where V̄W = C0C1W
−θ
t and V̄WW = −θC0C1W

−θ−1
t , to solve the resulting equation. Note

that optimal consumption is linear in wealth, C(Wt) = C
−1/θ
0 Wt, and we arrive at

ρC0C1
W 1−θ
t

1− θ
+ C2 = C1

C
− 1−θ

θ

0 W 1−θ
t

1− θ
+ C2 +

(

µMWt − C
−1/θ
0 Wt

)

VW + 1
2
σ2
MW

2
t VWW

+
(
(1− ζM)1−θq + (1− ζ0

M)1−θ(1− q)− 1
)
C0C1

W 1−θ
t

1− θ
λ.

Collecting terms gives

ρ = C
−1/θ
0 + (1− θ)

(
µM − C

−1/θ
0

)
− (1− θ)1

2
σ2
Mθ

+
(
(1− ζM)1−θq + (1− ζ0

M)1−θ(1− q)− 1
)
λ

⇒ C
−1/θ
0 =

ρ− (1− θ)µM + λ− (1− ζM)1−θqλ− (1− ζ0

M)1−θ(1− q)λ

θ
+ (1− θ)1

2
σ2
M

=
ρ− (1− θ)µM + λ− (1− ζM)1−θλ

θ
+ (1− θ)1

2
σ2
M ,

where the last equality used that in general equilibrium asset prices in (12) imply ζM = ζ0

M .

This proves that the guess (46) indeed is a solution, and by inserting the guess together with

the constant, we obtain the consumption function. The effective risk aversion is obtained

directly from the value function in (46).

A.2 A model of growth under uncertainty

A.2.1 The Bellman equation and the Euler equation

As a necessary condition for optimality the Bellman’s principle gives at time s

ρV (Ws, As) = max
Cs,Hs

{

u(Cs, Hs) +
1

dt
EsdV (Ws, As)

}

.

Using Itô’s formula yields

dV = VW (dWs − (eνK − 1)Ws−dNt) + VAdAs +
1
2

(
VAAσ

2
AA

2
s + VWWσ

2
KW

2
s

)
dt

+[V (Ws, As)− V (Ws−, As−)]dNt

= ((rs − δ)Ws +Hsw
H
s − Cs)VWdt+ VWσKWsdZs + VAµAAsdt+ VAσAAsdBs

+1
2

(
VAAσ

2
AA

2
s + VWWσ

2
KW

2
s

)
dt+ [V (eνKWs−, As−)− V (Ws−, As−)]dNt.
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Using the property of stochastic integrals, we may write

ρV (Ws, As) = max
Cs,Hs

{
u(Cs, Hs) + ((rs − δ)Ws +Hsw

H
s − Cs)VW

+1
2

(
VAAσ

2
AA

2
s + VWWσ

2
KW

2
s

)
+ VAµAAs + [V (eνKWs, As)− V (Ws, As)]λ

}

for any s ∈ [0,∞). Because it is a necessary condition for optimality, we obtain the first-

order conditions (25) and (26) which make optimal consumption and hours functions of the

state variables, Ct = C(Wt, At) and Ht = H(Wt, At), respectively.

For the evolution of the costate we use the maximized Bellman equation

ρV (Wt, At) = u(C(Wt, At), H(Wt, At)) + ((rt − δ)Wt +H(Wt, At)w
H
t − C(Wt, At))VW

+VAµAAt +
1
2

(
VAAσ

2
AA

2
t + VWWσ

2
KW

2
t

)
+ [V (eνKWt, At)− V (Wt, At)]λ, (47)

where rt = r(Wt, At) and w
L
t = w(Wt, At) follow from the firm’s optimization problem, and

the envelope theorem (also for the factor rewards) to compute the costate,

ρVW = µAAtVAW + ((rt − δ)Wt +Htw
H
t − Ct)VWW + (rt − δ)VW

+1
2

(
VWAAσ

2
AA

2
t + VWWWσ

2
KW

2
t

)
+ VWWσ

2
KWt + [VW (eνKWt, At)e

νK − VW (Wt, At)]λ.

Collecting terms we obtain

(ρ− (rt − δ) + λ)VW = VAWµAAt + ((rt − δ)Wt +Htw
H
t − Ct)VWW

+1
2

(
VWAAσ

2
AA

2
t + VWWWσ

2
KW

2
t

)
+ σ2

KVWWWt + VW (eνKWt, At)e
νKλ.

Using Itô’s formula, the costate obeys

dVW = VAWµAAtdt+ VAWσAAtdBt +
1
2

(
VWAAσ

2
AA

2
t + VWWWσ

2
KW

2
t

)
dt+ VWWσKWtdZt

+((rt − δ)Wt +Htw
H
t − Ct)VWWdt+ [VW (Wt, At)− VW (Wt−, At−)]dNt,

where inserting yields

dVW = (ρ− (rt − δ) + λ)VWdt− VW (eνKWt, At)e
νKλ− σ2

KVWWWtdt+ VAWAtσAdBt

+VWWWtσKdZt + [VW (eνKWt−, At−)− VW (Wt−, At−)]dNt,

which describes the evolution of the costate variable. As a final step, we insert the first-order

condition (25) to obtain the Euler equation (28).

A.2.2 Proof of Proposition 3.1

The idea of this proof is to show that using an educated guess of the value function, the

maximized Bellman equation (47) and the first-order condition (25) are both fulfilled. Since
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we assume that ψ = 0, we can neglect the intra-temporal first-order condition (26). The

household will always supply total hours to production, H = 1, since there is no disutility

from supplying labor. In what follows, we guess that the value function reads

V (Wt, At) =
C1W

1−θ
t

1− θ
+ f(At). (48)

From (25), optimal consumption is a constant fraction of wealth,

C−θ
t = C1W

−θ
t ⇔ Ct = C

−1/θ
1 Wt.

Now use the maximized Bellman equation (47), the property of the Cobb-Douglas technology,

FK = αAtK
α−1
t L1−α and FL = (1−α)AtK

α
t L

−α
t , together with the transformation Kt ≡ Wt

(as the population size is normalized to one), and insert the solution candidate,

ρ
C1W

1−θ
t

1− θ
=

C
− 1−θ

θ

1 W 1−θ
t

1− θ
+ (αAtW

α−1
t Wt − δWt + (1− α)AtW

α
t − C

−1/θ
1 Wt)C1W

−θ
t

−1
2
θC1W

1−θ
t σ2

K − g(At) + (e(1−θ)νK − 1)
C1W

1−θ
t

1− θ
λ,

where we defined g(At) ≡ ρf(At) − fAµAAt −
1
2
fAAσ

2
AA

2
t . When imposing the condition

α = θ and g(At) = C1At it can be simplified to

(ρ− (e(1−θ)νK − 1)λ)
C1W

1−θ
t

1− θ
+ g(At) =

C
− 1−θ

θ

1 W 1−θ
t

1− θ
+ (AtW

α−θ
t − δW 1−θ

t − C
−1/θ
1 W 1−θ

t )C1

−1
2
θC1W

1−θ
t σ2

K

⇔ (ρ− (e(1−θ)νK − 1)λ)W 1−θ
t = θC

−1/θ
1 W 1−θ

t − (1− θ)δW 1−θ
t − 1

2
θ(1− θ)W 1−θ

t σ2
K ,

which implies that C
−1/θ
1 =

(
ρ− (e(1−θ)νK − 1)λ+ (1− θ)δ + 1

2
θ(1− θ)σ2

K

)
/θ. This proves

that the guess (48) indeed is a solution, and by inserting the guess together with the constant,

we obtain the optimal consumption function.

A.2.3 Proof of Proposition 3.3

The idea of this proof follows Section A.2.2. An educated guess of the value function is

V (Wt, At) =
C1W

1−αθ
t

1− αθ
A−θ
t . (49)

From the first-order conditions (25) and (26), we obtain

C−θ
t (1−Ht)

(1−θ)ψ = C1W
−αθ
t A−θ

t ,

ψC1−θ
t (1−Ht)

(1−θ)ψ−1 = wHt C1W
−αθ
t A−θ

t ⇒ ψCt/(1−Ht) = (1− α)AtW
α
t H

−α
t .
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Suppose that optimal hours are constant, Ht = H, then optimal consumption becomes

a constant fraction of income,

Ct = (1− s)AtW
α
t H

1−α, 1− s ≡ (1− α)
1−H

ψH
, ψ 6= 0.

Inserting everything into (47) and collecting terms gives

(
ρ+ (1− αθ)δ +

(
θµA − 1

2

(
θ(1 + θ)σ2

A − αθ(1− αθ)σ2
K

))
− (eνK(1−αθ) − 1)λ

) C1W
1−αθ
t

1− αθ
A−θ
t

=
(
(1− s)1−θH(1−θ)(1−α)(1−H)(1−θ)ψ +

(
H1−α − (1− s)H1−α

)
(1− θ)C1

) A1−θ
t W α−αθ

t

1− θ
.

Hence, for ρ = ρ̄ and

C1 = −
(1− s)1−θH(1−α)(1−θ)(1−H)(1−θ)ψ

(1− θ)H1−α − (1− θ)(1− s)H1−α
,

the constant savings rate is indeed the optimal solution. The optimal hours can be obtained

from the first-order condition for consumption

Ct(1−H)−
1−θ

θ
ψ = C

−1/θ
1 W α

t At

⇔
1− α

ψ
H−α(1−H)1−

1−θ

θ
ψ = C

−1/θ
1 .

Inserting the condition for C1, we obtain

(
1− α

ψ

)−θ

Hαθ(1−H)−θ+(1−θ)ψ = −
(1− s)1−θH(1−α)(1−θ)(1−H)(1−θ)ψ

(1− θ)H1−α − (1− θ)(1− s)H1−α

⇔
ψ

1− α
= −

1−H

(1− θ)H − (1− θ)(1− α)(1−H)/ψ
.

Collecting terms yields

ψ = −
(1− α)(1−H)

(1− θ)H − (1− θ)(1− α)(1−H)/ψ

⇔ −ψ(1− θ)H = θ(1− α)(1−H)

⇔ H =
θ(1− α)

θ(1− α)− ψ(1− θ)

which are admissible solutions if and only if 0 < H < 1, which holds for θ > 1.

A.2.4 Obtaining the dynamic equilibrium system

We employ both first-order conditions (25) and (26) to substitute the costate VW and obtain

Euler equations for both optimal consumption and hours. For consumption it gives (28),
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which for our simplifying assumptions σK = σA = µA = 0 reduces to

duC = (ρ− (rt − δ) + λ)uCdt− uC(C(e
νKWt), H(eνKWt))e

νKλdt

+(uC(C(e
νKWt−), H(eνKWt−))− uC(Ct−, Ht−)) dNt

⇔ dCt =
uC
uCC

(ρ− (rt − δ) + λ)dt−
uC
uCC

uC(C(e
νKWt), H(eνKWt))

uC(C(Wt), H(Wt))
eνKλdt

−
uCH
uCC

(dHt − (H(eνKWt−)−H(Wt−))dNt) + (C(eνKWt−)− C(Wt−)) dNt. (50)

Similarly, we use the first-order condition for hours (26), and replace VW by −uH/w
H
t ,

d(uH/YH) = (ρ− (rt − δ) + λ)uH/YHdt

−uH(C(e
νKWt), H(eνKWt))/YH(e

νKWt, H(eνKWt))e
νKλdt

+

[
uH(C(e

νKWt−), H(eνKWt−))

YH(eνKWt−, H(eνKWt−))
−
uH(C(Wt−), H(Wt−))

YH(Wt−, H(Wt−))

]

dNt

⇔ duH = (ρ− (rt − δ) + λ)uHdt− uH(C(e
νKWt), H(eνKWt))

YH(Wt, Ht)e
νKλ

YH(eνKWt, H(eνKWt))
dt

+uH/YH(dYH − (YH(Wt, Ht)− YH(Wt−, Ht−))dNt)

+(uH(Ct, Ht)− uH(Ct−, Ht−))dNt,

in which we may use YH = YH(Wt, Ht). Thus, we get

dYH = YHH(dHt − (Ht −Ht−)dNt) + YHK(dWt − (Wt −Wt−)dNt)

+(YH(Wt, Ht)− YH(Wt−, Ht−))dNt.

Use the inverse function theorem to obtain

dHt =
uH
uHH

(ρ− (rt − δ) + λ)dt−
uH
uHH

uH(C(e
νKWt), H(eνKWt))

uH(C(Wt), H(Wt))

YH(Wt, Ht)e
νKλ

YH(eνKWt, H(eνKWt))
dt

−
uHC
uHH

(dCt − (Ct − Ct−)dNt) +
uH

uHHYH
(dYH − (YH(Wt, Ht)− YH(Wt−, Ht−))dNt)

+(H(Wt)−H(Wt−))dNt.

Finally we insert the differentials for consumption and for the wage rate. After some tedious

algebra and by collecting partial derivatives, ū ≡ uCHuHC − uCCuHH , we arrive at

dHt =
uHCuC − uCCuH
YHH/YHuHuCC + ū

(ρ− (rt − δ) + λ)dt

−
uCCuHYHK/YH

YHH/YHuHuCC + ū
((rt − δ)Wt +Htw

H
t − Ct)dt

+
uCCuH

YHH/YHuHuCC + ū

uH(C(e
νKWt), H(eνKWt))

uH(C(Wt), H(Wt))

YH(Wt, Ht)

YH(eνKWt, H(eνKWt))
eνKλdt

−
uHCuC

YHH/YHuHuCC + ū

uC(C(e
νKWt), H(eνKWt))

uC(C(Wt), H(Wt))
eνKλdt+ (Ht −Ht−)dNt. (51)
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In summary, the system of (50), (51), together with the budget constraint,

dWt = ((rt − δ)Wt +Htw
H
t − Ct)dt− (1− eνK )Wt−dNt, (52)

define the reduced form description of the dynamic equilibrium system.

A.2.5 The dynamic system for Cobb-Douglas production and CRRA utility

In this section we derive the equilibrium system for the case of Cobb-Douglas production,

Yt = AKα
t H

1−α
t and CRRA utility as in (30). We may use the partial derivatives

uC = C−θ
t (1−Ht)

(1−θ)ψ, uH = −ψC1−θ
t (1−Ht)

(1−θ)ψ−1, uCC = −θC−θ−1
t (1−Ht)

(1−θ)ψ,

uHH = ((1− θ)ψ − 1)ψC1−θ
t (1−Ht)

(1−θ)ψ−2, uHC = −(1− θ)ψC−θ
t (1−Ht)

(1−θ)ψ−1,

YH = (1− α)AKα
t H

−α
t , YHH = −α(1− α)AKα

t H
−α−1
t , YHK = α(1− α)AKα−1

t H−α
t ,

YHH/YH = −αH−1
t , YHK/YH = αK−1

t ,

to obtain our dynamic system in three variables Ct, Ht and Wt. As from Section 3.3.3, we

may neglect the first equation since for any interior solution Ct = C(H(Wt),Wt). We get

dHt =
−(1− θ)ψC−2θ

t (1−Ht)
2(1−θ)ψ−1 − θψC−2θ

t (1−Ht)
2(1−θ)ψ−1

θψC−2θ
t (1−Ht)2(1−θ)ψ−1YHH/YH + ū

(ρ− (rt − δ) + λ)dt

−
θψC−2θ

t (1−Ht)
2(1−θ)ψ−1YHK/YH

θψC−2θ
t (1−Ht)2(1−θ)ψ−1YHH/YH + ū

((rt − δ)Wt +Htw
H
t − Ct)dt

+
θψC−2θ

t (1−Ht)
2(1−θ)ψ−1

θψC−2θ
t (1−Ht)2(1−θ)ψ−1YHH/YH + ū

uH(C(e
νKWt), H(eνKWt))

uH(C(Wt), H(Wt))

×
YH(Wt, Ht)

YH(eνKWt, H(eνKWt))
eνKλdt

−
−(1− θ)ψC−2θ

t (1−Ht)
2(1−θ)ψ−1

θψC−2θ
t (1−Ht)2(1−θ)ψ−1YHH/YH + ū

uC(C(e
νKWt), H(eνKWt))

uC(C(Wt), H(Wt))
eνKλdt

+(Ht −Ht−)dNt,

where

ū = (1− θ)2ψ2C−2θ
t (1−Ht)

2(1−θ)ψ−2 + (θψ2 − θ2ψ2 − ψθ)C−2θ
t (1−Ht)

2(1−θ)ψ−2

=
(
(1− θ)2ψ2 + θψ2 − θ2ψ2 − ψθ

)
C−2θ
t (1−Ht)

2(1−θ)ψ−2

= ψ (ψ − θψ − θ)C−2θ
t (1−Ht)

2(1−θ)ψ−2.
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Using the equilibrium condition (38), the jump terms are given by

uH(C(e
νKWt), H(eνKWt))

uH(C(Wt), H(Wt))
=

C(eνKWt)
1−θ

(
C(eνKWt)H(eνKWt)

αe−ανKW−α
t

)(1−θ)ψ−1

C(Wt)1−θ
(
C(Wt)H(Wt)αW

−α
t

)(1−θ)ψ−1

= C̃(Wt)
−θ+(1−θ)ψH̃(Wt)

(1−θ)ψα−αe−(1−θ)ανKψ+ανK ,

uC(C(e
νKWt), H(eνKWt))

uC(C(Wt), H(Wt))
=

C(eνKWt)
−θ

(
C(eνKWt)H(eνKWt)

αe−ανKW−α
t

)(1−θ)ψ

C(Wt)−θ
(
C(Wt)H(Wt)αW

−α
t

)(1−θ)ψ

= C̃(Wt)
−θ+(1−θ)ψH̃(Wt)

(1−θ)ψαe−(1−θ)ψανK ,

YH(Wt, Ht)

YH(eνKWt, H(eνKWt))
=

H(Wt)
−α

eανKH(eνKWt)−α
= H̃(Wt)

αe−ανK .

Collecting terms we may obtain

dHt =
− ((1− θ)ψ + θψ) (ρ− rt + δ + λ)− θψYHK/YH((rt − δ)Wt +Htw

H
t − Ct)

θψYHH/YH + ψ (ψ − θψ − θ) (1−Ht)−1
dt

+
ψC̃(Wt)

−θ+(1−θ)ψH̃(Wt)
(1−θ)ψαeνk−(1−θ)ψανKλ

θψYHH/YH + ψ (ψ − θψ − θ) (1−Ht)−1
dt+ (Ht −Ht−)dNt.

Inserting the remaining partial derivatives gives

dHt =
ρ− (1− θ)rt + δ + λ− θαδ − θαCt/Wt

αθH−1
t − (ψ − θψ − θ) (1−Ht)−1

dt

+
−C̃(Wt)

−θ+(1−θ)ψH̃(Wt)
(1−θ)ψαeνk−(1−θ)ψανKλ

αθH−1
t − (ψ − θψ − θ) (1−Ht)−1

dt+ (Ht −Ht−)dNt,

which is the evolution of optimal hours in the reduced form description in the main text.

A.3 Tables and Figures
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Table A.1: Calibrated model and the risk premium (endowment economy)

(1) (2) (3) (4) (5) (6) (7)
Parameters

No Low High Low Low Low
disasters Baseline θ λ q µA ρ

θ (coef. of relative
risk aversion) 4 4 3 4 4 4 4

σA (s.d. of growth rate,
no disasters) 0.02 0.02 0.02 0.02 0.02 0.02 0.02

ρ (rate of time
preference) 0.03 0.03 0.03 0.03 0.03 0.03 0.02

µA (growth rate,
deterministic part) 0.025 0.025 0.025 0.025 0.025 0.020 0.025

λ (disaster probability) 0 0.017 0.017 0.025 0.017 0.017 0.017
q (default probability

in disaster) 0 0.4 0.4 0.4 0.3 0.4 0.4

1− eνA (size of disaster) 0 0.4 0.4 0.4 0.4 0.4 0.4

1− eκ (size of default) 0 0.4 0.4 0.4 0.4 0.4 0.4

Variables
Default risk 0 0.021 0.012 0.03 0.016 0.021 0.021
Disaster risk 0 0.031 0.019 0.046 0.036 0.031 0.031
Diffusion risk 0.002 0.002 0.001 0.002 0.002 0.002 0.002
Risk premium 0.002 0.054 0.032 0.078 0.054 0.054 0.054

Expected market rate 0.128 0.06 0.067 0.028 0.06 0.04 0.05
Expected bill rate 0.126 0.031 0.051 -0.013 0.026 0.011 0.021
Market premium 0.002 0.029 0.016 0.041 0.033 0.029 0.029
Expected market rate,
conditional on no disaster 0.128 0.066 0.074 0.038 0.066 0.046 0.056

Face bill rate 0.126 0.034 0.054 -0.009 0.028 0.014 0.024
Market premium,
conditional on no disaster 0.002 0.033 0.02 0.047 0.038 0.033 0.033

Sharpe ratio,
conditional on no disaster 0.08 1.641 0.996 2.366 1.901 1.641 1.641

Expected growth rate 0.025 0.016 0.016 0.012 0.016 0.011 0.016
Expected growth rate,
conditional on no disaster 0.025 0.025 0.025 0.025 0.025 0.02 0.025
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Table A.2: Calibrated model and the risk premium (endowment economy)

(1) (2) (3) (4) (5) (6) (7)
Parameters

No High High High Low Low
default Baseline σA λ q 1− eνA 1− eκ

θ (coef. of relative
risk aversion) 4 4 4 4 4 4 4

σA (s.d. of growth rate,
no disasters) 0.02 0.02 0.05 0.02 0.02 0.02 0.02

ρ (rate of time
preference) 0.03 0.03 0.03 0.03 0.03 0.03 0.03

µA (growth rate,
deterministic part) 0.025 0.025 0.025 0.025 0.025 0.025 0.025

λ (disaster probability) 0.017 0.017 0.017 0.2 0.017 0.017 0.017
q (default probability

in disaster) 0 0.4 0.4 0.4 1 0.4 0.4

1− eνA (size of disaster) 0.4 0.4 0.4 0.034 0.4 0.2 0.4

1− eκ (size of default) 0.4 0.4 0.4 0.034 0.4 0.4 0.2

Variables
Default risk 0 0.021 0.021 0.003 0.052 0.007 0.01
Disaster risk 0.052 0.031 0.031 0.004 0 0.002 0.042
Diffusion risk 0.002 0.002 0.01 0.002 0.002 0.002 0.002
Risk premium 0.054 0.054 0.062 0.009 0.054 0.01 0.054

Expected market rate 0.06 0.06 0.047 0.102 0.06 0.108 0.06
Expected bill rate 0.013 0.031 0.01 0.099 0.058 0.106 0.022
Market premium 0.047 0.029 0.037 0.002 0.002 0.003 0.038
Expected market rate,

conditional on no disaster 0.066 0.066 0.054 0.108 0.066 0.112 0.066
Face bill rate 0.013 0.034 0.013 0.102 0.065 0.108 0.023
Market premium, conditional

conditional on no disaster 0.054 0.033 0.041 0.006 0.002 0.003 0.043
Sharpe ratio,

conditional on no disaster 2.681 1.641 0.824 0.292 0.08 0.162 2.161

Expected growth rate 0.016 0.016 0.015 0.019 0.016 0.021 0.016
Expected growth rate,

conditional on no disaster 0.025 0.025 0.024 0.025 0.025 0.025 0.025
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Table A.3: Calibrated model and the risk premium (production economy)

(1) (2) (3) (4) (5) (6) (7)
Parameters

No High Low Low High High
disasters Baseline θ α δ λ |νK |

θ (coef. of relative
risk aversion) 4 4 6 4 4 4 4

α (output elasticity
of capital) 0.75 0.75 0.75 0.33 0.75 0.75 0.75

δ (capital depreciation,
deterministic part) 0.1 0.1 0.1 0.1 0.05 0.1 0.1

ρ (rate of time
preference) 0.05 0.05 0.05 0.05 0.05 0.05 0.05

σK (s.d. of stochastic
depreciation, no disasters) 0 0 0 0 0 0 0

σA (s.d. of TFP growth) 0 0 0 0 0 0 0
µA (growth rate TFP,

deterministic part) 0 0 0 0 0 0 0
λ (disaster probability) 0 0.017 0.017 0.017 0.017 0.02 0.017
1− eνK (size of disaster) 0 0.4 0.4 0.4 0.4 0.4 0.5

Variables
Implied knife-edge value ρ̄ 0.200 0.230 0.435 0.035 0.130 0.236 0.251

Risk premium
steady state 0 0.024 0.034 0.014 0.027 0.028 0.045
zero wealth (left limit) 0 0.032 0.068 0.013 0.032 0.037 0.068

Market rate, steady state (gross) 0.150 0.131 0.116 0.147 0.077 0.128 0.122
Bill rate, steady state (gross) 0.150 0.107 0.081 0.133 0.051 0.101 0.078
Market rate, steady state (net) 0.050 0.031 0.016 0.047 0.027 0.028 0.022
Bill rate, steady state (net) 0.050 0.007 -0.019 0.033 0.001 0.001 -0.022
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Figure A.1: Risk premia in a production economy
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Notes: These figures illustrate optimal consumption (left panel), optimal hours (middle panel) and the risk premium (right
panel) as functions of wealth (◦ are steady-state values) for different levels of relative risk aversion and σK = σA = µA = 0;
other parameters (ρ, α, θ, δ, λ, 1− eνK , ψ) = (0.05, 0.75, ·, 0.1, 0.017, 0.4, 0); θ = 0.75 (dotted), θ = 4 (dashed), and θ = 6 (solid).
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Notes: These figures illustrate optimal consumption (left panel), optimal hours (middle panel) and the risk premium (right
panel) as functions of wealth (◦ are steady-state values) for different levels of relative risk aversion and σK = σA = µA = 0;
other parameters (ρ, α, θ, δ, λ, 1− eνK , ψ) = (0.05, 0.75, ·, 0.1, 0.017, 0.4, 1); θ = 0.75 (dotted), θ = 4 (dashed), and θ = 6 (solid).

37



Figure A.2: Risk premia in a production economy

0 20 40 60 80

0
2

4
6

8
10

Wealth

C
on

su
m

pt
io

n

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Wealth

H
ou

rs

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

Wealth

R
is

k 
pr

em
iu

m

Notes: These figures illustrate optimal consumption (left panel), optimal hours (middle panel) and the risk premium (right
panel) as functions of wealth (◦ are steady-state values) for different levels of relative risk aversion and σK = σA = µA = 0;
other parameters (ρ, α, θ, δ, λ, 1−eνK , ψ) = (0.03, 0.75, ·, 0.25, 0.017, 0.4, 0); θ = 0.75 (dotted), θ = 4 (dashed), and θ = 6 (solid).
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Notes: These figures illustrate optimal consumption (left panel), optimal hours (middle panel) and the risk premium (right
panel) as functions of wealth (◦ are steady-state values) for different levels of relative risk aversion and σK = σA = µA = 0;
other parameters (ρ, α, θ, δ, λ, 1−eνK , ψ) = (0.03, 0.75, ·, 0.25, 0.017, 0.4, 1); θ = 0.75 (dotted), θ = 4 (dashed), and θ = 6 (solid).
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