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C. New Keynesian analysis

C.1. Which policy instruments?

The recent episodes shed light on the set of central bank instruments. They demonstrated

that the (short-term) nominal interest rate, traditionally considered as the most important

instrument, cannot be used as a sufficient description of monetary policy. In particular,

the monetary authority may focus on other longer maturities.1 Such policies would need

to control the long-ends of either the nominal and/or the real yield curve. As the inflation

target is under the discretion of the monetary authority, there might be changes in its

perception by economic agents due to communication or other measures.

A large body of literature and anecdotal evidence show that unconventional policies, in

particular forward guidance and quantitative easing (QE), are important monetary policy

instruments too. Unless one adds financial frictions (e.g., Gertler and Karadi, 2011), or

assumes imperfect substitutability between different maturities (cf. Chen, Cúrdia, and

Ferrero, 2012), the NK model predicts that arbitrary QE operations are irrelevant. This

is important because inflation seems to be unaffected by the large-scale asset purchase

(LSAP) programmes. Hence, QE as such is not considered a separate policy instrument.2

In contrast, forward guidance, which also includes the communication of the inflation

target, has strong effects in the standard NK model (Del Negro, Giannoni, and Patterson,

2015; Campbell, Fisher, Justiniano, and Melosi, 2016). While the traditional instrument

targets the short-term interest rate, the unconventional policy measures are commonly

targeting interest rates at higher maturities (or the longer-end of the yield curve).

There is also an important difference with respect to forward guidance for the two

Taylor rules specified in (3a) and (3b). Pure ‘communication’ about future policy induces

a reaction of the interest rate in the feedback model due to the effect on inflation, while

in the partial adjustment model interest rates are immobile on impact (pre-determined),

e.g., with respect to changes in long-run targets. So an immediate challenge for empirical

research is to identify permanent shocks, and also to which extent an observed monetary

policy shocks contain information about (perceived) changes in long-run targets.

C.2. Do higher interest rates raise or lower inflation?

Following the discussion on the policy instruments we now address the question of whether

higher interest rates raise or lower inflation. In fact, the NK model for φ > 1 makes sharp

predictions regarding the systematic link between interest rates and inflation, but at the

1Swanson and Williams (2014) find that interest rates with a year or more to maturity were surprisingly
unconstrained and responsive to news throughout 2008 to 2010.

2As a caveat, LSAPs could affect term premia, a channel which is absent in the simple NK model and
will be discussed later. Moreover, the LSAPs could also affect agents expectations of the future course of
monetary policy (cf. Wright, 2012), which may be captured by ‘shocks’ to the long-run target rates.
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same time can explain both the short-run negative response and the long-run positive

Fisher effect. As shown below, the minimal set of ingredients, in a forward-looking general

equilibrium framework with active monetary policy, φ > 1, to produce a negative short-run

impact of interest rates on inflation is the partial adjustment model.

For the partial adjustment model, the inflation rate is a negative function of the interest

rate (cf. Figure 2).3 The figure plots inflation for different interest rates, which shows the

short-run negative relationship. The intuition is that the interest rate depends positively

on the level of inflation, but negatively on its time derivative,

it = φ(πt − π∗

t ) + i∗t − θ−1 dit/ dt, θ > 0. (C.1)

For a given value dit/ dt 6= 0, the larger the central bank’s desire to smooth interest rates

over time (the lower θ), the larger the second effect: Suppose that after a contractionary

monetary policy shock it > i∗t , so the (after-shock) time-derivative of the interest rate is

negative dit/ dt < 0, which reflects the slope of the impulse response function. Higher

interest rates are related to lower inflation rates, because the inflation rate is determined

by both the (long-run) Fisher relation and the mean reversion back to the target level.

In our solution, inflation falls by 0.5 percentage points on impact for an 1 percentage

point increase in interest rates. To summarize, the short-run response of inflation rates on

impact is negative, while the positive relationship (higher inflation targets imply higher

interest rates) is still given by the long-run Fisher relation i∗t = ρ + π∗

t . Higher interest

rates unambiguously imply higher yields to maturity of long-term bonds.

So what happens if central banks raise interest rates? If the increase is considered by

agents not only as temporary, but after all reflects a permanent change in the target rate,

inflation stability in the Fisher equation will result in higher long-run inflation.4 But can

higher permanent interest rates reduce inflation in the short run? Indeed this is possible if

the ‘target shock’ is accompanied by concrete policy action, i.e., a raise in the short-term

interest rate.5 In the partial adjustment model, this induces the traditional negative effect

on inflation, which may even dominate the long-run Fisher effect temporarily. However,

inflation cannot temporarily decrease in the simple feedback model. Unless we consider a

persistent shock to the feedback rule any deviation from the equilibrium instantaneously

jumps back. Any temporary shock would evaporate, and the interest rate accommodates

its equilibrium level (infinitely fast). Only for the case where θ <∞, a temporary change

induces some persistence and thus own equilibrium dynamics.

Let us consider a concrete example. Suppose that variables in the simple NK model

3In the simplified framework, we solve a standard boundary-value problem (perfect-foresight solution)
and plot the initial values for different starting values (cf. Section 3 for a detailed description).

4For example, the shock is interpreted as an inflation target shock (cf. Rupert and Sustek, 2019).
5Another possibility is to add long-term debt and use the fiscal theory (FTPL) to pin down inflation

(following McCallum, 2001; Del Negro and Sims, 2015). Cochrane (2017a) shows that the FTPL produces
a temporary reduction in the inflation due to the decline in the nominal market value of the debt.
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are at steady state and the long-run interest rate i∗t (or the inflation target π∗

t ) is lower by

50 basis points (bp), and also the short-term interest rate it is decreased by 250 bp. The

concrete policy action is 250 bp (observed), but only a fraction 1/5 of the interest rate

cut is permanent (discretionary) leaving the remainder 4/5 being only temporary and not

reflecting changes in policy targets. In the long run we expect lower inflation due to the

Fisher relation i∗t = ρ + π∗

t , but temporarily the traditional negative trade-off dominates

the Fisher effect (cf. Figure E.25). Our simulation exercise shows that on impact the

inflation rate increases to 2.5% and then both inflation and interest rates accommodate

their new equilibrium levels after about 10 quarters. This perspective on ‘monetary policy

shocks’ consisting of temporary and permanent shocks offers an alternative explanation

for the so-called ‘prize puzzle’ (going back to Sims, 1992; Eichenbaum, 1992).6 So at the

risk of oversimplifying: Higher short-term interest rates (Fed Funds) decrease inflation,

whereas higher long-run interest rates (inflation target) increase inflation.

C.3. AD-AS model interpretation

Consider the IS curve (1) , which depicts a relationship between the interest rate and total

demands for goods. Demand for goods increase over time (the growth rate is positive) if

the real interest rate is higher than the natural rate. Solving forward yields

xt =

∫

∞

t

(rt − (it − πt))ds

or

xt = r̂t − (̂it − π̂t) (C.2)

which can be interpreted as the NK interest rate channel (capital fixed). It shows that an

increase in the (real) expected future interest rates depresses demand.

Once we combine the IS curve with the Taylor rule, we obtain a demand relationship

or the aggregate demand (AD) curve, e.g., with feedback rule (3a),

dxt = ((φ− 1)(πt − π∗

t )− (rt − r∗t ))dt,

or with partial adjustment

dxt = ((φ− 1)(πt − π∗

t )− (rt − r∗t ))dt− θ−1 dit.

A higher rate of inflation ceteris paribus is associated with a lower aggregate demand

for output for φ > 1, and the change in aggregate demand is positive ensuring that the

6Similarly, a cost-channel in addition to the demand channel is likely to generate a positive response on
impact, but has little empirical support (see Castelnuovo, 2012, and the references therein). Castelnuovo
and Surico (2010) show that accounting for expected inflation may also explain the ‘puzzle’.
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system converges back to equilibrium where aggregate demand meets its supply.

Solving forward yields the traditional negative relationship (feedback rule)

xt = −

∫

∞

t

((φ− 1)(πs − π∗

s)− (rs − r∗s))ds ≡ − (φ− 1)π̂t + r̂t,

or

π̂t = −1/(φ− 1)xt + 1/(φ− 1)r̂t, (C.3)

The function shifts upwards with positive (temporary) shocks to the natural rate and

downwards with positive (permanent) shocks to the Wicksellian natural rate r∗t or negative

shocks to the inflation target π∗

t . Consider that rt falls below the Wicksellian natural rate

r∗t such that r̂t is negative, other things equal. Because the shock is unanticipated, the

AD curve shifts downwards lowering aggregate demand. The extent of this shift in the

aggregate demand depends on the aggregate supply (AS) response in (2),

πt − π∗

t = κ

∫

∞

t

e−ρ(v−t)xv dv ≡ κx̂t, (C.4)

with κ → 0 the AS curve is flat (fixed prices, no price effects) and with κ → ∞ the

AS curve is vertical (frictionless limit, purely inflationary), The key point here is that if

inflation is higher than its target in the short run, output will be above potential.

D. Technical proofs and derivations

D.1. Technical details

# dat on p.17: The household can trade on Arrow securities (excluded to save on notation)

and on a nominal government bonds bt at a nominal interest rate of it. Let nt denote the

number of shares and pbt the equilibrium price of bonds. Suppose the household earns a

disposable income of itbt + ptwtlt + ptTt + pt̥t, where pt is the price level (or price of the

consumption good), wt is the real wage, Tt is a lump-sum transfer, and ̥t are the profits

of the firms in the economy; the household’s budget constraint is:

dnt =
itbt − ptct + ptwtlt + ptTt + pt̥t

pbt
dt. (D.5)

Let bond prices follow:

dpbt = αtp
b
tdt (D.6)

in which αt denotes a price change, which is determined in general equilibrium (in equilib-

rium prices are function of the state variables, for example, by fixing αt the bond supply

has to accommodate so as to permit the bond’s nominal interest rate being admissible).
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The household’s financial wealth, bt = ntp
b
t , is then given by:

dbt = (itbt − ptct + ptwtlt + ptTt + pt̥t)dt+ αtbtdt, (D.7)

Let prices pt follow the process:

dpt = πtptdt (D.8)

such that the (realized) rate of inflation is locally non-stochastic. We can interpret dpt/pt

as the realized inflation over the period [t, t+ dt] and πt as the inflation rate.

Letting at ≡ bt/pt denote real financial wealth and using Itô’s formula, the household’s

real wealth evolves according to:

dat =
dbt
pt

−
bt
p2t
dpt =

itbt − ptct + ptwtlt + ptTt + pt̥t + αtbt
pt

dt−
bt
p2t
πtptdt

or:

dat = ((it + αt − πt)at − ct + wtlt + Tt +̥t) dt (D.9)

Since government bonds are in net zero supply, bt = 0, it implies αt = 0 for all t.

# dx1,t on p.19: Differentiating x1,t in (15) with respect to time gives:

1

dt
dx1,t = −λtyt + (ρ+ δ)x1,t

(1− ε)πtEt

∫

∞

t

λτe
−(ρ+δ)(τ−t)

(

pt
pτ

)1−ε

e
∫ τ
t
(1−ε)χπ∗

s dsyτ dτ

+Et

∫

∞

t

λτe
−(ρ+δ)(τ−t)

(

pt
pτ

)1−ε ∂
[

e
∫ τ

t
(1−ε)χπ∗

s ds
]

∂t
yτ dτ

= −λtyt + (ρ+ δ + (1− ε)πt)x1,t

+Et

∫

∞

t

λτe
−(ρ+δ)(τ−t)

(

pt
pτ

)1−ε ∂
[

e
∫ τ

t
(1−ε)χπ∗

s ds
]

∂t
yτ dτ

= −λtyt + (ρ+ δ + (1− ε)πt)x1,t

+Et

∫

∞

t

λτe
−(ρ+δ)(τ−t)

(

pt
pτ

)1−ε

e
∫ τ
t
(1−ε)χπ∗

s ds∂
[∫ τ

t
(1− ε)χπ∗

s ds
]

∂t
yτ dτ

= −λtyt + (ρ+ δ + (1− ε)(πt − χπ∗

t ))x1,t

+Et

∫

∞

t

λτe
−(ρ+δ)(τ−t)

(

pt
pτ

)1−ε

e
∫ τ

t
(1−ε)χπ∗

s ds(1− ε)χ

∫ τ

t

∂π∗

s

∂t
dsyτ dτ

or (17) in the main text. A similar procedure gives (18).
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# dπt on p.19: Differentiating (19), we obtain the inflation dynamics as:

d(πt − χπ∗

t ) = δ (Π∗

t )
−ε dΠ∗

t

= δ (Π∗

t )
−ε ε

ε− 1

(

1/x1,t dx2,t − x2,t/x
2
1,t dx1,t

)

= δ (Π∗

t )
1−ε (1/x2,t dx2,t − 1/x1,t dx1,t)

= −δ (Π∗

t )
1−ε (πt − χπ∗

t + (mct/x2,t − 1/x1,t)λtyt) dt

= −(δ + (1− ε)(πt − χπ∗

t )) (πt − χπ∗

t + (mct/x2,t − 1/x1,t)λtyt) dt

which is (20) in the main text. # dvt on p.21: Differentiating (25), we get:

1

dt
dvt = δ (Π∗

t )
−ε + δ

∫ t

−∞

1

dt
de−δ(t−τ)−ε

∫ t

τ
χπ∗

s ds

(

piτ
pt

)−ε

dτ

= δ (Π∗

t )
−ε − (δ + εχπ∗

t )

∫ t

−∞

δe−δ(t−τ)−ε
∫ t

τ
χπ∗

s ds

(

piτ
pt

)−ε

dτ

+

∫ t

−∞

δe−δ(t−τ )−ε
∫ t
τ
χπ∗

s dsp−ε
iτ εp

ε−1
t

1

dt
dptdτ

= δ (Π∗

t )
−ε + (ε(πt − χπ∗

t )− δ) vt. (D.10)

which is (26) in the main text.

#̥t on p.21: For aggregate profits, we use the demand of intermediate producers in (24):

̥t =

∫ 1

0

(

pit
pt

−mct

)

yitdi

= yt

∫ 1

0

(

pit
pt

−mct

)(

pit
pt

)−ε

di

=

(

∫ 1

0

(

pit
pt

)1−ε

di−mctvt

)

yt

= (1−mctvt)yt

which is (27) in the main text.
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#V (Zt,Xt) on p.23: The HJB equation (29) in scalar notation reads

ρV (Zt;Yt) = max
(ct,lt)

dt

{

log ct − ψ
l1+ϑ
t

1 + ϑ

}

+ ((it − πt)at − ct + wtlt + Tt +̥t)Va

+(θφπ(πt − π∗

t ) + θφy(yt/yss − 1)− θ(it − i∗t ))Vi +
1
2
σ2
iVii

+
(

δ (Π∗

t )
−ε + (ε(πt − χπ∗

t )− δ) vt
)

Vv

−(ρd log dt −
1
2
σ2
d)dtVd +

1
2
σ2
dd

2
tVdd

−(ρA logAt −
1
2
σ2
A)AtVA + 1

2
σ2
AA

2
tVAA

−(ρg log sg,t −
1
2
σ2
g)sg,tVg +

1
2
σ2
gs

2
g,tVgg. (D.11)

#dVa(Zt,Xt) on p.24: From D.11, the concentrated HJB equation in scalar notation reads

ρV (Zt;Yt) = dt log c(Zt;Yt)− dtψ
l(Zt;Yt)

1+ϑ

1 + ϑ
+ ((it − πt)at − c(Zt;Yt) + wtl(Zt;Yt) + Tt +̥t) Va

+(θφπ(πt − π∗

t ) + θφy(yt/yss − 1)− θ(it − i∗t ))Vi +
1
2
σ2
iVii

+
(

δ (Π∗

t )
−ε + (ε(πt − χπ∗

t )− δ) vt
)

Vv

−(ρd log dt −
1
2
σ2
d)dtVd +

1
2
σ2
dd

2
tVdd

−(ρA logAt −
1
2
σ2
A)AtVA + 1

2
σ2
AA

2
tVAA

−(ρg log sg,t −
1
2
σ2
g)sg,tVg +

1
2
σ2
gs

2
g,tVgg. (D.12)

Using the envelope theorem, we obtain the costate variable Va as:

ρVa = (it − πt)Va + ((it − πt)at − ct + wtlt + Tt +̥t) Vaa

+(θφπ(πt − π∗

t ) + θφy(yt/yss − 1)− θ(it − i∗t ))Via +
1
2
σ2
iViia

+
(

δ (Π∗

t )
−ε + (ε(πt − χπ∗

t )− δ) vt
)

Vva

−(ρd log dt −
1
2
σ2
d)dtVda +

1
2
σ2
dd

2
tVdda

−(ρA logAt −
1
2
σ2
A)AtVAa +

1
2
σ2
AA

2
tVAAa

−(ρg log sg,t −
1
2
σ2
g)sg,tVga +

1
2
σ2
gs

2
g,tVgga. (D.13)

An alternative formulation in terms of differentials is:

(ρ− it + πt)Vadt = Vaadat + (dit − σidBi,t)Via +
1
2
σ2
iViia + Vvadvt

+ (ddt − σddtdBd,t) Vda +
1
2
σ2
dd

2
tVddadt

+ (dAt − σAAtdBA,t) VAa +
1
2
σ2
AA

2
tVAAadt + (dsg,t − σgsg,tdBg,t) Vga +

1
2
σ2
gs

2
g,tVggadt
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or

(ρ− it + πt) Vadt+ σddtVdadBd,t + σAAtVAadBA,t + σgsg,tVgadBg,t + σiitViadBi,t

= Vaadat + Viadit +
1
2
σ2
i i

2
tViia + Vvadvt

+Vdaddt +
1
2
σ2
dd

2
tVdadt + VAadAt +

1
2
σ2
AA

2
tVAadt+ Vgadsg,t +

1
2
σ2
gs

2
g,tVgadt.

Observe that the costate variable in general evolves according to:

dVa = Vaadat + Viadit +
1
2
σ2
iViiadt+ Vvadvt

+Vdaddt +
1
2
σ2
dd

2
tVddadt+ VAadAt +

1
2
σ2
AA

2
tVAAadt+ Vgadsgt +

1
2
σ2
gs

2
g,tVggadt

= (ρ− it + πt)Vadt

+σddtVdadBd,t + σAAtVAadBA,t + σgsg,tVgadBg,t + σiViadBi,t,

which is (35) in the main text.

# ms/mt (SDF) on p.24: Starting from (35):

d lnVa =
1

Va
dVa −

1
2
σ2
dd

2
t

V 2
da

V 2
a

dt− 1
2
σ2
AA

2
t

V 2
Aa

V 2
a

dt− 1
2
σ2
gs

2
g,t

V 2
ga

V 2
a

dt− 1
2
σ2
m

V 2
ia

V 2
a

dt

= (ρ− it + πt)dt+ σddt
Vda
Va

dBd,t + σAAt

VAa

Va
dBA,t + σgsg,t

Vga
Va

dBg,t

+σi

Via
Va

dBi,t −
1
2
σ2
dd

2
t

V 2
da

V 2
a

dt− 1
2
σ2
AA

2
t

V 2
Aa

V 2
a

dt− 1
2
σ2
gs

2
g,t

V 2
ga

V 2
a

dt− 1
2
σ2
i

V 2
ia

V 2
a

dt.

For s > t, we may write:

e−ρ(s−t)Va(Zs;Ys)

Va(Zt;Yt)
=

exp









−
∫ s

t
(iu − πu)du−

1
2

∫ s

t

V 2
da

V 2
a
σ2
dd

2
udu−

1
2

∫ s

t

V 2
Aa

V 2
a
σ2
AA

2
udu

−1
2

∫ s

t

V 2
ga

V 2
a
σ2
gs

2
g,udu−

1
2

∫ s

t

V 2
ia

V 2
a
σ2
idu

+
∫ s

t
Vda

Va
σddudBd,u +

∫ s

t
VAa

Va
σAAudBA,u +

∫ s

t

Vga

Va
σgsg,udBg,u +

∫ s

t
Via

Va
σidBi,u









.

which denotes the equilibrium SDF ms/mt in (36).
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#PDE approach on p.33: Using Itô’s lemma:

dP
(N)
t = θ(φπ(πt − π∗

t ) + φy(yt/yss − 1)− (it − i∗t ))(∂P
(N)
t /∂it) dt +

1
2
σ2
i (∂

2P
(N)
t /(∂it)

2) dt

+(δ(1− (ε− 1)(πt − χπ∗

t )/δ)
−

ε
1−ε + (ε(πt − χπ∗

t )− δ)vt)(∂P
(N)
t /∂vt) dt

−
(

ρd log dt −
1
2
σ2
d

)

dt(∂P
(N)
t /∂dt) dt+

1
2
σ2
dd

2
t (∂

2P
(N)
t /(∂dt)

2) dt

−
(

ρA logAt −
1
2
σ2
A

)

At(∂P
(N)
t /∂At) dt+

1
2
σ2
AA

2
t (∂

2P
(N)
t /(∂At)

2) dt

−
(

ρg log sg,t −
1
2
σ2
g

)

sg,t(∂P
(N)
t /∂sg,t) dt+

1
2
σ2
gs

2
g,t(∂

2P
(N)
t /(∂sg,t)

2) dt

+(∂P
(N)
t /∂it)σidBi,t + (∂P

(N)
t /∂dt)σddt dBd,t + (∂P

(N)
t /∂At)σAAt dBA,t

+(∂P
(N)
t /∂sg,t)σgsg,t dBg,t,

where the relevant equations are

dλt = (ρ− it + πt)λtdt

+σddtλddBd,t + σAAtλAdBA,t + σgsg,tλgdBg,t + σiλidBi,t

dx1,t = ((ρ+ δ − (ε− 1)(πt − χπ∗

t ))x1,t − dt/(1− sgsg,t)) dt

dx2,t = ((ρ+ δ − ε(πt − χπ∗

t ))x2,t −mctdt/(1− sgsg,t)) dt

dit = θ(φπ(πt − π∗

t ) + φy(yt/yss − 1)− (it − i∗t ))dt+ σidBi,t

dvt = (δ(1− (ε− 1)(πt − χπ∗

t )/δ)
−

ε
1−ε + (ε(πt − χπ∗

t )− δ)vt)dt

ddt = −
(

ρd log dt −
1
2
σ2
d

)

dtdt+ σddtdBd,t

dAt = −(ρA logAt −
1
2
σ2
A)At dt+ σAAtdBA,t

dsg,t = −(ρg log sg,t −
1
2
σ2
g)sg,t dt+ σgsg,tdBg,t.

Plugging into the pricing equation and eliminate time, we obtain the PDE for the risk-free

bond with λi = −c̃iλt, λg = −c̃gλt/sg,t, λA = −c̃Aλt/At, and λd = (1− c̃d)λt/dt.

D.2. Obtaining the Euler equation

Using the first-order condition (30) and (35), we obtain the implicit Euler equation:

d

(

dt
ct

)

= (ρ− it + πt)

(

dt
ct

)

dt

+σddt

(

1

ct
−
dt
c2t
cd

)

dBd,t − σAAt

dt
c2t
cAdBA,t − σgsg,t

dt
c2t
cgdBg,t − σm

dt
c2t
cidBi,t.

Vad = − (dt/c
2
t ) cd + 1/ct, VAa = − (dt/c

2
t ) cA, Vga = − (dt/c

2
t ) cg, and Via = − (dt/c

2
t ) ci are

expressed in terms of derivatives and levels of the consumption function. This equation

has a simple interpretation: the change in the marginal utility of consumption depends

on the rate of time preference minus the effective real interest rate and four additional

terms that control for the innovations to the four shocks to the economy.

10



Hence, by applying Itô’s formula we obtain the Euler equation:

d

(

ct
dt

)

= −

(

dt
ct

)−2 [

(ρ− it + πt)

(

dt
ct

)

dt

+σd

(

dt
ct

−
d2t
c2t
cd

)

dBd,t − σAAt

dt
c2t
cAdBA,t − σgsg,t

dt
c2t
cgdBg,t − σm

dt
c2t
cidBi,t

]

+

(

dt
ct

)−3(

σ2
d

(

d2t
c2t

− 2
d3t
c3t
cd +

d4t
c4t
c2d

)

+ σ2
AA

2
t

d2t
c4t
c2A + σ2

gs
2
g,t

d2t
c4t
c2g + σ2

i

d2t
c4t
c2i

)

dt,

which simplifies to

d

(

ct
dt

)

= −(ρ− it + πt)

(

ct
dt

)

dt

−σd

(

ct
dt

− cd

)

dBd,t + σAAtd
−1
t cAdBA,t + σgsg,td

−1
t cgdBg,t + σmd

−1
t cidBi,t

+

(

σ2
d

(

ct
dt

− 2cd +
dt
ct
c2d

)

+ σ2
AA

2
t

d−1
t

ct
c2A + σ2

gs
2
g,t

d−1
t

ct
c2g + σ2

i

d−1
t

ct
c2i

)

dt,

or

dct = −(ρ− it + πt)ctdt + σ2
d

d2t
ct
c2ddt+ σ2

A

A2
t

ct
c2Adt+ σ2

g

s2g,t
ct
c2gdt+ σ2

i

1

ct
c2idt

+σdcddtdBd,t + σAAtcAdBA,t + σgsg,tcgdBg,t + σicidBi,t

−ctρd log dtdt+
1
2
ctσ

2
ddt− cddtσ

2
ddt, (D.14)

which is (38), and ct = c(Zt;Yt) denotes the household’s consumption function. A similar

approach implies the Euler equation for the alternative shock process as:

dct = −(ρ− it + πt)ctdt+ σ2
A

A2
t

ct
c2Adt+ σ2

g

s2g,t
ct
c2gdt+ σ2

i

1

ct
c2idt

+σAAtcAdBA,t + σgsg,tcgdBg,t + σicidBi,t

ctρd(dt − d̄) (1− dt) /(1− d̄)/dtdt. (D.15)

D.3. Equilibrium

We define the recursive-competitive equilibrium of the nonlinear NK model with shocks by

the sequence {λt, lt, at, mct, x1,t, x2,t,̥t, wt, it, i
∗

t , gt, Tt, πt, π
∗

t ,Π
∗

t , vt, yt, dt, At, sg,t}
∞

t=0, which

is determined by the following equations:
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• Euler equation, the first-order conditions of the household, and budget constraint:

Equation 1

dct = −(ρ− it + πt − σ2
Ac̃

2
A − σ2

g c̃
2
g − σ2

i c̃
2
i + ρd log dt + (c̃d(1− c̃d)−

1
2
)σ2

d)ctdt

+σdc̃dctdBd,t + σAc̃ActdBA,t + σg c̃gctdBg,t + σic̃ictdBi,t

Equation 2

ψlϑt ct = wt

Equation 3

dt/ct = λt

(redundant)

dat = ((it − αt − πt)at − ct + wtlt + Tt +̥t) dt

• Profit maximization is given by:

Equation 4

Π∗

t =
ε

ε− 1

x2,t
x1,t

Equation 5

dx1,t = ((ρ+ δ + (1− ε)(πt − χπ∗

t ))x1,t − λtyt) dt

Equation 6

dx2,t = ((ρ+ δ − ε(πt − χπ∗

t ))x2,t − λtmctyt) dt

Equation 7

̥t = (1−mctvt)yt

Equation 8

wt = Atmct

• Government policy:

Equation 9

dit = (θφπ(πt − π∗

t ) + θφy(yt/yss − 1)− θ(it − i∗t ))dt + σidBi,t

Equation 10

gt = sgsg,tyt

(redundant)

Tt = −itat − sgsg,tyt

12



• Inflation evolution and price dispersion:

Equation 11

πt − χπ∗

t =
δ

1− ε

(

(Π∗

t )
1−ε − 1

)

Equation 12

dvt =
(

δ (Π∗

t )
−ε + (ε(πt − χπ∗

t )− δ) vt
)

dt

• Market clearing on goods and labor markets:

Equation 13

yt = ct + gt (expenditure)

Equation 14

yt =
At

vt
lt (production)

(redundant)

yt = wtlt +̥t (income)

• Stochastic processes follow:

Equation 15

ddt = −
(

ρd log dt −
1
2
σ2
d

)

dtdt + σddtdBd,t

Equation 16

dAt = −
(

ρA logAt −
1
2
σ2
A

)

Atdt+ σAAtdBA,t

Equation 17

dsg,t = −
(

ρg log sg,t −
1
2
σ2
g

)

sg,tdt+ σgsg,tdBg,t

Note that using the household’s budget constraint, we get in equilibrium:

dat = ((αt − πt)at − ct − gt + yt)dt

= (αt − πt)atdt,

where for dat = 0 either αt = πt and/or at = 0 for all t (here at = 0 because bt = 0).

Moreover, in equilibrium the laws of motion for the discounted expected future profits,

13



x1,t and discounted expected future costs x2,t are not direct functions of the controls:

dx1,t = ((ρ+ δ − (ε− 1)(πt − χπ∗

t ))x1,t − λtyt) dt

= ((ρ+ δ − (ε− 1)(πt − χπ∗

t ))x1,t − dt/((1− sgsg,t))) dt

and similarly:

dx2,t = ((ρ+ δ − ε(πt − χπ∗

t ))x2,t − λtytmct) dt

= ((ρ+ δ − ε(πt − χπ∗

t ))x2,t −mctdt/(1− sgsg,t)) dt

Note that the TVC requires that limt→∞ e−ρtE0V (Z
∗

t ) = 0, in which Z∗

t denotes the

state variables along the optimal path in line with general equilibrium conditions.

D.4. Proof of Proposition 1

We insert dct from (38) and the law of motions for the state variables

−(ρ− it + πt)ctdt + σ2
d

d2t
ct
c2ddt+ σ2

A

A2
t

ct
c2Adt+ σ2

g

s2g,t
ct
c2gdt+ σ2

i

1

ct
c2idt

+σdcddtdBd,t + σAAtcAdBA,t + σgsg,tcgdBg,t + σicidBi,t

−ctρd log dtdt+
1
2
ctσ

2
ddt− σ2

ddtcddt

−1
2
ciiσ

2
i dt−

1
2
cdd(σddt)

2dt− 1
2
cAA(σAAt)

2dt− 1
2
cgg(σgsg,t)

2dt =

ca ((it − πt)at − ct + wtlt + Tt +̥t) dt

+ci((θφπ(πt − π∗

t ) + θφy(yt/yss − 1)− θ(it − i∗t ))dt+ σidBi,t)

+cv(δ(1− (ε− 1)(πt − χπ∗

t )/δ)
ε

1−ε + (ε(πt − χπ∗

t )− δ)vt)dt

+cA(−
(

ρA logAt −
1
2
σ2
A

)

Atdt+ σAAtdBA,t)

+cd(−
(

ρd log dt −
1
2
σ2
d

)

dtdt+ σddtdBd,t)

+cg(−
(

ρg log sg,t −
1
2
σ2
g

)

sg,tdt+ σgsg,tdBg,t)
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Collecting terms we may eliminate time (and stochastic shocks) and arrive at

−(ρ− it + πt)dtV
−1
a dt

+σ2
d

d2t
dtV −1

a

(

V −2
a − 2dtV

−2
a V −1

a Vad + d2tV
−4
a V 2

ad

)

dt

+σ2
A

A2
t

dtV −1
a

d2tV
−4
a V 2

aAdt+ σ2
g

s2g,t
dtV −1

a

d2tV
−4
a V 2

agdt+ σ2
i

1

dtV −1
a

d2tV
−4
a V 2

aidt

+σd(V
−1
a − dtV

−2
a Vad)dtdBd,t − σAAtdtV

−2
a VaAdBA,t − σgsg,tdtV

−2
a VagdBg,t

−σidtV
−2
a VaidBi,t − dtV

−1
a ρd log dtdt+

1
2
dtV

−1
a σ2

ddt

−σ2
ddt(V

−1
a − dtV

−2
a Vad)dt−

1
2

(

2dtV
−3
a V 2

ai − dtV
−2
a Vaii

)

σ2
i dt

−1
2

(

−2V −2
a Vad + 2dtV

−3
a V 2

ad − dtV
−2
a Vadd

)

(σddt)
2dt

−1
2

(

2dtV
−3
a V 2

aA − dtV
−2
a VaAA

)

(σAAt)
2dt

−1
2

(

2dtV
−3
a V 2

ag − dtV
−2
a Vagg

)

(σgsg,t)
2dt =

−dtV
−2
a Vaa ((it − πt)at − ct + wtlt + Tt +̥t) dt

−dtV
−2
a Vai((θφπ(πt − π∗

t ) + θφy(yt/yss − 1)− θ(it − i∗t ))dt+ σidBi,t)

−dtV
−2
a Vav(δ(1− (ε− 1)(πt − χπ∗

t )/δ)
ε

1−ε + (ε(πt − χπ∗

t )− δ)vt)dt

−dtV
−2
a VaA(−

(

ρA logAt −
1
2
σ2
A

)

Atdt+ σAAtdBA,t)

+(V −1
a − dtV

−2
a Vad)(−

(

ρd log dt −
1
2
σ2
d

)

dtdt+ σddtdBd,t)

−dtV
−2
a Vag(−

(

ρg log sg,t −
1
2
σ2
g

)

sg,tdt + σgsg,tdBg,t)

which can be simplified to

−(ρ− it + πt)Vadt =

− ((it − πt)at − ct + wtlt + Tt +̥t) Vaadt

−(θφπ(πt − π∗

t ) + θφy(yt/yss − 1)− θ(it − i∗t ))Vaidt−
1
2
Vaiiσ

2
i dt

−(δ(1− (ε− 1)(πt − χπ∗

t )/δ)
ε

1−ε + (ε(πt − χπ∗

t )− δ)vt)Vavdt

+
(

ρA logAt −
1
2
σ2
A

)

AtVaAdt−
1
2
VaAA(σAAt)

2dt

+Vad
(

ρd log dt −
1
2
σ2
d

)

dtdt−
1
2
Vaddσ

2
dd

2
tdt

+Vag
(

ρg log sg,t −
1
2
σ2
g

)

sg,tdt−
1
2
Vagg(σgsg,t)

2dt

such that (40) must hold as an identity.

D.5. Steady state values

Steady-state. Suppose that without shocks the economy moves towards its steady state.

Setting the variance of shocks to zero yields the deterministic steady state values.
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• Euler equation, the first-order conditions of the household, and budget constraint:

Equation 1

π∗

t ≡ πss = i∗t − ρ ≡ iss − ρ

Equation 2

ψlϑsscss = wss

Equation 3

dssc
−1
ss = λss

• Profit maximization is given by:

Equation 4

Π∗

ss =
ε

ε− 1

x2,ss
x1,ss

Equation 5

0 = (ρ+ δ − (ε− 1)(1− χ)πss)x1,ss − λssyss

Equation 6

0 = (ρ+ δ − ε(1− χ)πss)x2,ss − λssyssmcss

Equation 7

̥ss = (1−mcssvss)yss

Equation 8

wss = Assmcss

• Government policy:

Equation 9

(This equation is an identity in the steady state.)

Equation 10

gss = sgsg,ssyss

• Inflation evolution and price dispersion:

Equation 11

(1− χ)πss =
δ

1− ε

(

(Π∗

ss)
1−ε − 1

)

Equation 12

0 = δ (Π∗

ss)
−ε + (ε(1− χ)πss − δ) vss
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• Market clearing on goods and labor markets (one condition is redundant):

Equation 13

yss = css + gss (expenditure)

Equation 14

yss =
Ass

vss
lss (production)

(redundant)

yss = wsslss +̥ss (income)

• Stochastic processes:

Equation 15

dss = 1

Equation 16

Ass = 1

Equation 17

sg,ss = 1

Given the level of steady-state inflation, around which the model often is linearized,

we obtain the following steady-state values. Using Equation 1, we obtain:

i∗t = π∗

t + ρ ⇔ iss = πss + ρ

Using Equation 11, we obtain the steady-state value for the price ratio:

Π∗

ss = (1 + (1− ε)(1− χ)πss/δ)
1

1−ε

From Equation 12, we obtain the steady-state value for price dispersion as:

vss =
δ (Π∗

ss)
−ε

δ − ε(1− χ)πss

Using Equations 5 and 6 we can solve for the steady-state value of the marginal cost:

mcss =
ρ+ δ − ε(1− χ)πss

ρ+ δ − (ε− 1)(1− χ)πss

(x2,ss/x1,ss)

17



which by inserting Equation 4 gives:

mcss =
ρ+ δ − ε(1− χ)πss

ρ+ δ − (ε− 1)(1− χ)πss

ε− 1

ε
Π∗

ss

Hence, we obtain

x1,ss = dss/((1− sgsg,ss)(ρ+ δ − (ε− 1)(1− χ)πss))

and

x2,ss = (1− 1/ε)x1,ssΠ
∗

ss

Using Equation 8, we obtain

wss = Assmcss

Using Equation 14, we obtain

yss = Asslss/vss

Using Equation 13 and Equation 10 yields

yss = css/(1− sgsg,ss)

Combining the last two equations gives

Asslss/vss = css/(1− sgsg,ss)

Using Equation 2 we get

ψlϑsscss = wss

hence we can collect terms to obtain

lss =

(

wssvss
ψ(1− sgsg,ss)Ass

)
1

1+ϑ

Using Equation 7 and Equation 14 we get

̥ss = (1−mcssvss)Asslss/vss

D.6. Linear approximations

In order to analyze local dynamics, the traditional approach is to approximate the dynamic

equilibrium system around steady-state values. We define we x̂t ≡ (xt − xss)/xss, where
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xss is the steady-state value for the variable xt. Thus, we can write xt = (1 + x̂t)xss.
7

• Euler equation, the first-order conditions of the household, and budget constraint:

Equation 1

d(ct/css − 1) = −(ρ− it + πt + ρd(dt/dss − 1))dt

Equation 2

ct/css + ϑ(lt/lss − 1) = wt/wss

Equation 3

dt/dss − ct/css = λt/λss − 1

(1 + dt/dss − λt/λss)css = ct

• Profit maximization is given by:

Equation 4

Π̂∗

t = x̂2,t − x̂1,t

Equation 5

d(x1,t/x1,ss − 1) = ((ρ+ δ + (1− ε)(1− χ)πss)(x1,t/x1,ss − 1)

−(ε− 1)(πt − χπ∗

t − (1− χ)πss)) dt

−yss(dss/css) ((yt/yss − 1) + (dt/dss − 1)− (ct/css − 1)) /x1,ss dt

Equation 6

d(x2,t/x2,ss − 1) = ((ρ+ δ − ε(1− χ)πss)(x2,t/x2,ss − 1)

−ε(πt − χπ∗

t − (1− χ)πss)) dt

−mcssyss(dss/css) ((mct/mcss − 1) + (yt/yss − 1) + (dt/dss − 1)− (ct/css − 1)) /x2,ss dt

Equation 7

̥t/̥ss = yt/yss −
mcssvss

1−mcssvss
(mct/mcss − 1 + vt/vss − 1)

Equation 8

wt/wss − 1 = At/Ass +mct/mcss
7In what follows we (log-)linearize around non-stochastic steady-state values, in particular, we assume

certainty equivalence (as an approximation), which amounts to setting σ2

d = σ2

A = σ2

d = σ2

i = 0.
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• Government policy:

Equation 9

d(it − i∗t ) = (θφπ(πt − π∗

t ) + θφy(yt/yss − 1)− θ(it − i∗t )) dt

Equation 10

gt/gss = sg,t/sg,ss − 1 + yt/yss

• Inflation and price dispersion:

Equation 11

πt − χπ∗

t − (1− χ)πss = (δ + (1− ε)(1− χ)πss)(x2,t/x2,ss − x1,t/x1,ss)

Equation 12

d(vt/vss − 1) =
ε(1− χ)πss

δ + (1− ε)(1− χ)πss

(πt − χπ∗

t − (1− χ)πss)dt

+(ε(1− χ)πss − δ)(vt/vss − 1)dt

• Market clearing on goods and labor markets:

Equation 13

yt/yss = ct/css + sgsg,ss/(1− sgsg,ss)(sg,t/sg,ss − 1)

Equation 14

yt/yss = At/Ass + lt/lss − vt/vss

• Stochastic processes follow:

Equation 15

d(dt/dss − 1) = −ρd(dt/dss − 1)dt

Equation 16

d(At/Ass − 1) = −ρA(At/Ass − 1)dt

Equation 17

d(sg,t/sg,ss − 1) = −ρg(sg,t/sg,ss − 1)dt
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Hence, we may summarize the local equilibrium dynamics around steady-state values as:

dit = θ(φπa2(x̂2,t − x̂1,t) + φy(ĉt + sgsg,ss/(1− sgsg,ss)ŝg,t)− (it − i∗t )) dt

dv̂t = ε(1− χ)πss(x̂2,t − x̂1,t)dt+ (ε(1− χ)πss − δ)v̂tdt

dd̂t = −ρdd̂tdt

dÂt = −ρAÂtdt

dŝg,t = −ρgŝg,tdt

dx̂1,t = ((ρ+ εa2)x̂1,t − (ε− 1)a2x̂2,t − yss(dss/css)(sgsg,ss/(1− sgsg,ss)ŝg,t + d̂t)/x1,ss)dt

dx̂2,t = (a1x̂2,t − εa2(x̂2,t − x̂1,t)) dt

−a1((1 + ϑ)(sgsg,ss/(1− sgsg,ss)ŝg,t + ĉt − Ât) + ϑv̂t + d̂t)dt

dĉt = (it − i∗t − a2(x̂2,t − x̂1,t)− ρdd̂t)dt

in which we define percentage deviations x̂t ≡ (xt − xss)/xss and used the definitions for

a1 ≡ ρ+ δ − ε(1− χ)πss, and a2 ≡ δ + (1− ε)(1− χ)πss in the main text.

In order to analyze local dynamics around the non-stochastic steady state, we need to

study the eigenvalues of the Jacobian matrix evaluated at the steady state:

d
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




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where a11 ≡ −θ

a15 ≡ θφysgsg,ss/(1− sgsg,ss)

a16 ≡ −θφπa2

a17 ≡ θφπa2

a18 ≡ θφy

a22 ≡ ε(1− χ)πss − δ

a26 ≡ −ε(1− χ)πss

a27 ≡ ε(1− χ)πss

a33 ≡ −ρd

a44 ≡ −ρA

a55 ≡ −ρg

a63 ≡ −yss(dss/css)/x1,ss

a65 ≡ −yss(dss/css)sgsg,ss/(1− sgsg,ss)/x1,ss

a66 ≡ ρ+ εa2

a67 ≡ −(ε− 1)a2

a72 ≡ −a1ϑ

a73 ≡ −a1

a74 ≡ a1(1 + ϑ)

a75 ≡ −a1(1 + ϑ)sgsg,ss/(1− sgsg,ss)

a76 ≡ εa2

a77 ≡ a1 − εa2

a78 ≡ −a1(1 + ϑ)

a81 ≡ 1

a83 ≡ −ρd

a86 ≡ a2

a87 ≡ −a2
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D.7. Stochastic steady state

The deterministic values, however, do not necessarily correspond to the stationary points

in the absence of shocks, i.e., the values at which the variables are expected to stay idle

in the presence of risk. Hence, the stochastic steady state values are obtained from the

conditional deterministic equations, setting the random shocks (not their variances) to

zero. We may thus start with (8) and compute E( ddt) = 0, or

0 = −
(

ρd log dt −
1
2
σ2
d

)

dtdt ⇒ dss = exp(1
2
σ2
d/ρd)

The stochastic steady state values do not necessarily reflect moments of the variables. For

example, the preference shock implies:

d log dt = −ρd log dtdt + σddBd,t ⇔ log dt = e−ρdt log d0 + σd

∫ t

0

eρ(s−t) dBs,

which has a long-run (or stationary) Normal distribution log dt ∼ N (0, 1
2
σ2
d/ρd).

8 Hence,

if log dt is asymptotically normally distributed, dt ∼ LN (0, 1
2
σ2
d/ρd) with

E(dt) = exp(1
4
σ2
d/ρd).

It shows that both the unconditional mean value of the stationary distribution and the

stochastic steady state increase in σ2
d.

Similarly, we obtain the stochastic steady states for the remaining shocks

0 = −
(

ρA logAt −
1
2
σ2
A

)

Atdt ⇒ Ass = exp(1
2
σ2
A/ρA)

0 = −
(

ρg log sg,t −
1
2
σ2
g

)

sg,tdt ⇒ sg,ss = exp(1
2
σ2
g/ρg)

Steady-state. In the presence of uncertainty, in case the dynamic variables approach a

stochastic steady-state distribution (a stationary distribution). Analogous to the perfect

foresight model, we define the conditional deterministic steady state values as the variables

where the (conditional) deterministic system (41) stays idle. For given inflation targets

8The moments of the stationary distribution can be obtained from

d(log dt)
2 = 2 log dt d log dt + σ2

d dt

= −ρd2 log dt log dtdt+ σd2 log dtdBd,t + σ2

d dt

the expected value reads

dE(log dt) = −ρddE(log dt)dt ⇔ E(log dt) = e−ρ
d
t log d0 ⇒ lim

t→∞

E(log dt) = 0

such that
E((log dt)

2) = Var((log dt)
2) = 1

2
σ2

d/ρd
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π∗

t , the Euler equation (41) determines the long-run values i∗t .

• Euler equation, and the first-order conditions of the household:

Equation 1

i∗t − π∗

t ≡ iss − πss

= ρ−
(

c̃2dσ
2
d + c̃2Aσ

2
A + c̃2gσ

2
g + c̃2iσ

2
i −

1
2
c̃ddσ

2
d −

1
2
c̃AAσ

2
A − 1

2
c̃ggσ

2
g −

1
2
c̃iiσ

2
i − c̃dσ

2
d

)

Equation 2

ψlϑsscss = wss

Equation 3

dssc
−1
ss = λss

• Profit maximization is given by:

Equation 4

Π∗

ss =
ε

ε− 1

x2,ss
x1,ss

Equation 5

0 = (ρ+ δ − (ε− 1)(1− χ)πss)x1,ss − λssyss

Equation 6

0 = (ρ+ δ − ε(1− χ)πss)x2,ss − λssyssmcss

Equation 7

̥ss = (1−mcssvss)yss

Equation 8

wss = Assmcss

• Government policy:

Equation 9

(This equation is an identity in the steady state.)

Equation 10

gss = sgsg,ssyss
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• Inflation evolution and price dispersion:

Equation 11

(1− χ)πss =
δ

1− ε

(

(Π∗

ss)
1−ε − 1

)

Equation 12

0 = δ (Π∗

ss)
−ε + (ε(1− χ)πss)− δ) vss

• Market clearing on goods and labor markets (one condition is redundant):

Equation 13

yss = css + gss (expenditure)

Equation 14

yss =
Ass

vss
lss (production)

(redundant)

yss = wsslss +̥ss (income)

• Stochastic processes:

Equation 15

dss = exp(1
2
σ2
d/ρd)

Equation 16

Ass = exp(1
2
σ2
A/ρA)

Equation 17

sg,ss = exp(1
2
σ2
g/ρg)

Using Equation 11, we obtain the steady-state value for the price ratio:

Π∗

ss = (1 + (1− ε)(1− χ)πss)/δ)
1

1−ε

From Equation 12, we obtain the steady-state value for price dispersion as:

vss =
δ (Π∗

ss)
−ε

δ − ε(1− χ)πss

Using Equations 5 and 6 we can solve for the steady-state value of the marginal cost:

mcss =
ρ+ δ − ε(1− χ)πss

ρ+ δ − (ε− 1)(1− χ)πss

(x2,ss/x1,ss)
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which by inserting Equation 4 gives:

mcss =
ρ+ δ − ε(1− χ)πss

ρ+ δ − (ε− 1)(1− χ)πss

ε− 1

ε
Π∗

ss

Hence, we obtain

x1,ss = dss/((1− sgsg,ss)(ρ+ δ − (ε− 1)(1− χ)πss))

and

x2,ss = (1− 1/ε)x1,ssΠ
∗

ss

Using Equation 8, we obtain

wss = Assmcss

Using Equation 14, we obtain

yss = Asslss/vss

Using Equation 13 and Equation 10 yields

yss = css/(1− sgsg,ss)

Combining the last two equations gives

Asslss/vss = css/(1− sgsg,ss)

Using Equation 2 we get

ψlϑsscss = wss

hence we can collect terms to obtain

lss =

(

wssvss
ψ(1− sgsg,ss)Ass

)
1

1+ϑ

Using Equation 7 and Equation 14 we get

̥ss = (1−mcssvss)Asslss/vss
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D.8. Alternative Taylor principles and stability

We review insights related to positive trend inflation and determinacy in the NK model

(χ = 0). To study the stability properties of the dynamic system, the nonlinear system

dxt ≡ f(xt)dt

is approximated by the linear system

d

dt
xt =

1

dt
dxt = A(xt − xss)

Equivalently, we may study (absolute) deviations from an equilibrium xt−xss by defining

d

dt
(xt − xss) =

d

dt
xt = A(xt − xss)

such that the Jacobian matrix is identical, or define percentage deviations x̂t ≡ xt/xss−1

for each variable and use xt = (1 + x̂t)xss such that for each variable

d

dt
x̂t = 1/xss

d

dt
xt = A(xt − xss)/xss = Ax̂t

with identical Jacobian matrix of the vector function f(xt).

For illustration, we show the linearized NK model with sg = 0 (cf. Section D.6). We

compare the feedback rule vs. partial adjustment. With partial adjustment, we have:

dit = (θφπ(πt − π∗

t ) + θφyŷt − θ(it − i∗t ))dt

⇔ d(it − iss) = (θφπ(πt − π∗

t ) + θφyŷt − θ(it − i∗t ))dt

⇔ d(eθt(it − i∗t ))/ dt = eθtθφπ(πt − π∗

t ) + eθtθφy ŷt

for t0 → −∞ ⇒ it − i∗t = θ

∫ t

−∞

e−θ(t−k)(φπ(πk − π∗

t ) + φyŷt) dk,

which requires θ > 0 or alternatively for the feedback rule model:

it − i∗t = φπ(πt − π∗

t ) + φy(yt/yss − 1), φπ > 1, φy ≥ 0.

D.8.1. Feedback rule

In the feedback rule in the simple NK model we have:

it − i∗t = φ(πt − π∗

t ), φ > 1
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or more general, the feedback rule (used in the main text) with an output response:

it − i∗t = φπ(πt − π∗

t ) + φy(yt/yss − 1), φπ > 1, φy ≥ 0,

for example φπ ≈ 1.5 and φy ≈ 0.5 for target rates π∗

t ≈ 0 (see Woodford, 2001).

To study the properties of the equilibrium points, define xt ≡ (yt, vt, x1,t, x2,t) such

that

f(xt) ≡ f(yt, vt, x1,t, x2,t) =













− (ρ− it + πt) yt

δ (1 + (1− ε)πt/δ)
−

ε
1−ε + (επt − δ)vt

(ρ+ δ − (ε− 1)πt)x1,t − 1

(ρ+ δ − επt)x2,t − ψvϑt y
1+ϑ
t













Evaluating the Jacobian matrix at an equilibrium point xss = (yss, vss, x1,ss, x2,ss) yields

A1 =













φy 0 (1− φπ)a2yss/x1,ss −(1− φπ)a2yss/x2,ss

0 επss − δ −επssvss/x1,ss επssvss/x2,ss

0 0 ρ+ εa2 −(ε− 1)a2x1,ss/x2,ss

−(1 + ϑ)a1x2,ss/yss −ϑa1x2,ss/vss εa2x2,ss/x1,ss a1 − εa2













where in this version a1 ≡ ρ+ δ − επss, and a2 ≡ δ + (1− ε)πss.

Hence, we may approximate the equilibrium dynamics by

dŷt = (it − ρ− πt)dt

dv̂t = ((επss − δ)v̂t + επss/a2(πt − πss))dt

dx̂1,t = ((ρ+ a2)x̂1,t + (1− ε)(πt − πss)) dt

dx̂2,t = (a1x̂2,t − ε(πt − πss)− (1 + ϑ)a1ŷt − ϑa1v̂t)dt

where πt − πss = a2(x2,t/x2,ss −x1,t/x1,ss) and it = φy(yt/yss− 1)+φπ(πt− πss)+ iss such

that the inflation dynamics are:

dπt = ρ(πt − πss) dt− (δ + (1− ε)πss)πss(x2,t/x2,ss − 1)dt

−κ((yt/yss − 1) + (vt/vss − 1)ϑ/(1 + ϑ))dt

in which κ ≡ (δ + (1− ε)πss)(1 + ϑ) (ρ+ δ − επss).

Around zero-inflation target πss = 0 and iss = ρ, the equilibrium dynamics are:

dŷt = (it − ρ− πt)dt

dv̂t = −δv̂tdt

dπt = (ρπt − (1 + ϑ)(ρ+ δ)δŷt − ϑ(ρ+ δ)δv̂t)dt

In this first-order approximation, price dispersion is no longer affected by other variables,
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such that it will always converge. Analyzing equilibrium dynamics will be based on:

dŷt = (it − ρ− πt)dt

dπt = (ρπt − κŷt)dt

where κ ≡ (1 + ϑ) (ρ+ δ) δ and it = iss + φππt + φyŷt. Sometimes the linearized model

around zero inflation target is used to approximate the model around positive inflation

targets, πss > 0 (e.g., Cochrane, 2017b, eq. (4) with time-varying πss and ρ).

Based on the reduced system x = (ŷt, πt) for πss = 0, the 2× 2 Jacobian matrix reads:

A1 =

[

φy φπ − 1

−κ ρ

]

For a unique locally bounded equilibrium we need two positive eigenvalues, for the larger

system πss 6= 0 we need three positive and one negative eigenvalue.

The Jacobian matrix has tr(A1) = λ1+λ2 = φy+ρ > 0 and det(A1) = ρφy+(φπ−1)κ

is positive for φπ > 1, thus both eigenvalues have positive real parts, λ1λ2 = det(A1),

λ2 − (φy + ρ)λ+ ρφy + (φπ − 1)κ = 0

λ1,2 =
1
2
(ρ+ φy ±

√

(φy + ρ)2 − 4(ρφy + (φπ − 1)κ))

So the unique locally bounded solution is ŷt = 0 and πt = πss such that it = iss.

D.8.2. Partial adjustment

For the partial adjustment model, we need to add the dynamics of the interest rate:

d(it − i∗t ) = (θφπ(πt − π∗

t ) + θφy ŷt − θ(it − i∗t ))dt

It relates to Graeve, Emiris, and Wouters (2009), where the Taylor rule has lagged interest

rates and response to the output gap (percentage deviations).

To study the properties of the two equilibrium points, define xt ≡ (yt, vt, x1,t, x2,t, it)

such that

f(xt) ≡ f(yt, vt, x1,t, x2,t, it) =

















− (ρ− it + πt) yt

δ (1 + (1− ε)πt/δ)
−

ε
1−ε + (επt − δ)vt

(ρ+ δ − (ε− 1)πt)x1,t − 1

(ρ+ δ − επt) x2,t − ψvϑt y
1+ϑ
t

θφπ(πt − πss) + θφy(yt/yss − 1)− θ(it − iss)
















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Evaluating the Jacobian matrix at equilibrium point xss = (yss, vss, x1,ss, x2,ss, iss) yields

A2 =

















0 0 a2yss/x1,ss −a2yss/x2,ss yss

0 επss − δ −επssvss/x1,ss επssvss/x2,ss 0

0 0 ρ+ εa2 −(ε− 1)a2x1,ss/x2,ss 0

−(1 + ϑ)a1x2,ss/yss −ϑa1x2,ss/vss εa2x2,ss/x1,ss a1 − εa2 0

θφy/yss 0 −θφπa2/x1,ss θφπa2/x2,ss −θ

















where a1 ≡ ρ+ δ − επss, and a2 ≡ δ + (1− ε)πss.

Hence, we may approximate the equilibrium dynamics by

dŷt = (it − ρ− πt) dt

dv̂t = ((επss − δ)v̂t + επss/a2(πt − πss)) dt

dx̂1,t = ((ρ+ a2)x̂1,t + (1− ε)(πt − πss)) dt

dx̂2,t = (a1x̂2,t − ε(πt − πss)− (1 + ϑ)a1ŷt − ϑa1v̂t)dt

dit = (θφπ(πt − πss) + θφyŷt − θ(it − iss)) dt

where πt − πss = a2(x2,t/x2,ss − x1,t/x1,ss) such that the inflation dynamics are:

dπt = (ρ(πt − πss)− a2πssx̂2,t − κŷt − ϑa1a2v̂t)dt

in which κ ≡ (1 + ϑ)(ρ+ δ − επss)(δ + (1− ε)πss).

Around zero-inflation target πss = 0 and iss = ρ, the equilibrium dynamics are:

dŷt = (it − ρ− πt) dt

dv̂t = −δv̂t dt

dπt = (ρπt − (1 + ϑ)δ(ρ+ δ)ŷt − ϑδ(ρ+ δ)v̂t)dt

dit = (θφππt + θφy ŷt − θ(it − iss)) dt

In this first-order approximation, price dispersion is no longer affected by other variables,

such that it will always converge. Analyzing equilibrium dynamics will be based on:

dŷt = (it − ρ− πt) dt

dπt = (ρπt − κŷt)dt

dit = (θφππt + θφyŷt − θ(it − ρ)) dt

where κ ≡ (1 + ϑ) (ρ+ δ) δ. Based on the reduced system xt = (ŷt, πt, it) for πss = 0, the
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3× 3 Jacobian matrix reads:

A2 =







0 −1 1

−κ ρ 0

θφy θφπ −θ







For a unique locally bounded equilibrium we need two positive and one negative eigenvalue,

for the larger system πss 6= 0 we need three positive and two negative eigenvalues.

D.9. Local determinacy

In this section we study local determinacy of the minimal NK model. We illustrate how

the results depend on the inflation target π∗

t > 0, and how the Taylor rule can be extended

to allow for larger regions of determinacy. For comparison with the simple NK modelwe

assume throughout the section sg = 0, χ = 0, and ‖(σd, σA, σg, σi)‖ = 0, such that rt = ρ.

While the simple NK model with a feedback rule has no state variables, the NK model

with no shocks (henceforth minimal NK model) with π∗

t > 0 introduces price dispersion vt

as a relevant state variable, and a unique locally bounded solution requires three positive

eigenvalues of the Jacobian matrix (cf. Appendix D.8.1)9

A1 =













φy 0 (1− φπ)a2yss/x1,ss (φπ − 1)a2yss/x2,ss

0 επss − δ −επssvss/x1,ss επssvss/x2,ss

0 0 ρ+ εa2 −(ε− 1)a2x1,ss/x2,ss

−(1 + ϑ)a1x2,ss/yss −ϑa1x2,ss/vss εa2x2,ss/x1,ss a1 − εa2













where

a1 ≡ ρ+ δ − επss, a2 ≡ δ + (1− ε)πss, (D.16)

such that the (linearized) inflation dynamics are

dπt = ρ(πt − πss) dt− (δ + (1− ε)πss)πss(x2,t/x2,ss − 1)dt

−κ((yt/yss − 1) + (vt/vss − 1)ϑ/(1 + ϑ))dt. (D.17)

So we define

κ ≡ (δ + (1− ε)πss)(1 + ϑ) (ρ+ δ − επss) . (D.18)

9We impose the parametric restriction δ > επss to ensure non-negative price dispersion, which in the
frictionless case δ → ∞ the condition is fulfilled. For πss = 0 the system can be reduced to

A1 =

[

φy φπ − 1
−κ ρ

]

,

which shows that the output response would not introduce different conclusions regarding stability in the
simple NK model: A necessary (and sufficient) condition for local determinacy still would be φπ > 1.
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For a unique locally bounded equilibrium we need three positive and one negative

eigenvalue. In the NK model with partial adjustment, the two relevant state variables are

the interest rate and the level of price dispersion, so a unique locally bounded solution

requires three positive eigenvalues of the Jacobian matrix (cf. Appendix D.8.2)

A2 =

















0 0 a2yss/x1,ss −a2yss/x2,ss yss

0 επss − δ −επssvss/x1,ss επssvss/x2,ss 0

0 0 ρ+ εa2 (1− ε)a2x1,ss/x2,ss 0

−(1 + ϑ)a1x2,ss/yss −ϑa1x2,ss/vss εa2x2,ss/x1,ss a1 − εa2 0

θφy/yss 0 −θφπa2/x1,ss θφπa2/x2,ss −θ

















whereas for πss = 0 it collapses to the 3 × 3 matrix of the simple model. Note that the

(linearized) inflation dynamics are not affected by the specification of the Taylor rule.

For a unique locally bounded equilibrium we need three positive and two negative

eigenvalues. The determinacy regions are shown in the accompanying web appendix.

Apart from the effects of risk, the policy instruments are the same as before. The more

general Taylor rules (21a) and (21b) introduce an output response φy, in addition to the

inflation response φπ as a new policy parameter.

Summarizing, the choice of the Taylor rule in the (continuous-time) NK model can be

decisive for the answer whether higher interest rates raise or (temporarily) lower inflation.

While the feedback rule postulates that higher interest rates necessarily correspond to

higher inflation rates (varying the relevant state variables/shocks), the partial adjustment

model supports both a negative and a positive link as in the simple model. Our results

indicate that the policy experiments imply qualitatively the same responses for interest

rates at near zero values compared to normal times about the long-run equilibrium.

We replicate the findings in Coibion and Gorodnichenko (2011), showing that the

conclusion about determinacy in the NK model is different in models with positive trend

inflation (no indexation). Similarly we find that the output response helps to obtain

determinacy in the feedback model, whereas the partial adjustment model seems to be

more robust to positive inflation target because of the interest smoothing component.
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D.10. The dynamic system under the risk-neutral probability measure

Consider the system of stochastic processes, i.e., 5 endogenous processes for the auxiliary

variables x1,t, x2,t, price dispersion vt, the Taylor rule it, and the Euler equation ct, and 3

exogenous processes for sg,t, dt, At, which summarize equilibrium dynamics:

dct = −(ρ− it + πt)ctdt + σ2
d

d2t
ct
c2ddt+ σ2

A

A2
t

ct
c2Adt+ σ2

g

s2g,t
ct
c2gdt+ σ2

i

1

ct
c2idt

+σdcddtdBd,t + σAAtcAdBA,t + σgsg,tcgdBg,t + σicidBi,t

−ctρd log dtdt +
1
2
ctσ

2
ddt− cddtσ

2
ddt

dx1,t = ((ρ+ δ − (ε− 1)(πt − χπ∗

t ))x1,t − dt/(1− sgsg,t)) dt

dx2,t = ((ρ+ δ − ε(πt − χπ∗

t ))x2,t −mctdt/(1− sgsg,t)) dt

dit = θ(φπ(πt − π∗

t ) + φy(yt/yss − 1)− (it − i∗t ))dt+ σidBi,t

dvt = (δ(1− (ε− 1)(πt − χπ∗

t )/δ)
−

ε
1−ε + (ε(πt − χπ∗

t )− δ)vt)dt

ddt = −
(

ρd log dt −
1
2
σ2
d

)

dtdt+ σddtdBd,t

dAt = −(ρA logAt −
1
2
σ2
A)At dt+ σAAtdBA,t

dsg,t = −(ρg log sg,t −
1
2
σ2
g)sg,t dt+ σgsg,tdBg,t

Suppose that Bt = (Bi,t, Bd,t, BA,t, Bg,t)
⊤ is the k-vector of Brownian motions under the

physical probability measure P, we define BQ
t = (BQ

i,t, B
Q
d,t, B

Q
A,t, B

Q
g,t)

⊤ as the equivalent

k-vector of Brownian motions under the risk-neutral probability measure, such that

d













BQ
i,t

BQ
d,t

BQ
A,t

BQ
g,t













= d













Bi,t

Bd,t

BA,t

Bg,t













−













σiVaiV
−1
a

σddtVadV
−1
a

σAAtVaAV
−1
a

σgsg,tVagV
−1
a













dt
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Hence, we may write the equilibrium dynamics under the risk-neutral measure Q as

dct = −(ρ− it + πt)ctdt+ σ2
d

d2t
ct
c2ddt+ σ2

A

A2
t

ct
c2Adt + σ2

g

s2g,t
ct
c2gdt+ σ2

i

1

ct
c2idt

+σ2
dd

2
tVadV

−1
a cddt + σ2

AA
2
tVaAV

−1
a cAdt+ σ2

gs
2
g,tVagV

−1
a cgdt + σ2

iVaiV
−1
a cidt

+σdcddtdB
Q
d,t + σAAtcAdB

Q
A,t + σgsg,tcgdB

Q
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E. Figures

E.1. Data and implied dynamics

Figure E.1: US federal funds rate, output gap, cyclical components
In this figure we show time series plots of the US Effective Federal Funds Rate (Fed Funds), and different
estimates of the Output gap based on potential output from the Congressional Budget Office (CBO), the
Hodrick-Prescott (HP) filter, and the Beveridge-Nelson (BN) trend-cycle decomposition, and the same
filter with dynamic mean adjustment (DMA). All series are obtained from the Federal Reserve Bank of
St. Louis Economic Dataset (FRED). The sample runs from January, 1990, through August, 2020.
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Figure E.2: Implied natural rate
In this figure we show time series plots of the model-implied natural rate using the simple NK model with
temporary shocks to the natural rate, by matching the monthly US Effective Federal Funds Rate (Fed
Funds) and minimizing the distance to the Consumer Price Index (Core CPI), seasonally adjusted, at the
monthly frequency. The sample runs from January, 1990, through August, 2020.
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Figure E.3: Implied natural rate
In this figure we show time series plots of the model-implied natural rate using the simple NK model with
temporary shocks to the natural rate, by matching the quarterly US Effective Federal Funds Rate (Fed
Funds) and minimizing the distance to the Consumer Price Index (Core CPI), seasonally adjusted, and
the Output gap (HP Filter) at the quarterly frequency from 1990Q1 through 2020Q2.
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Figure E.4: Implied inflation rates and 10-year treasury rates
In this figure we show time series plots of the model-implied inflation and the 10-year treasury rates using
the simple NK model with temporary shocks to the natural rate, by matching the observed US Effective
Federal Funds Rate (Fed Funds) and the Consumer Price Index (Core CPI), seasonally adjusted, at the
monthly frequency. The sample runs from January, 1990, through August, 2020.
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Figure E.5: Implied inflation rates, 10-year treasury rates and output gap
In this figure we show time series plots of the model-implied inflation, 10-year treasury rates, and the
output gap using the simple NK model, allowing for temporary shocks to the natural rate, when matching
the observed US Effective Federal Funds Rate (Fed Funds) and the Consumer Price Index (Core CPI),
seasonally adjusted, and the Output gap (HP Filter) at the quarterly frequency (1990Q1-2020Q2). Missing
values indicate that the algorithm is not able to solve the system of equations for the particular dates.
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Figure E.6: Implied natural rate
In this figure we show time series plots of the model-implied natural rate using the simple NK model
with temporary and permanent shocks to the natural rate and inflation, by matching the monthly US
Effective Federal Funds Rate (Fed Funds), the 10-Year Treasury Constant Maturity Rate (10Y Govt), the
10-Year Treasury Inflation Protected Securities Rate (10Y TIPS), and the Consumer Price Index (Core
CPI), seasonally adjusted, at the monthly frequency. Restricted by data availability of 10Y TIPS, the
sample runs from January, 2003, through August, 2020.
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Figure E.7: Implied natural rate
In this figure we show time series plots of the model-implied natural rate using the simple NK model
with temporary and permanent shocks to the natural rate and inflation, by matching the quarterly US
Effective Federal Funds Rate (Fed Funds), and the 10-Year Treasury Constant Maturity Rate (10Y Govt),
the 10-Year Treasury Inflation Protected Securities Rate (10Y TIPS), the Consumer Price Index (Core
CPI), seasonally adjusted, and the Output gap (HP Filter) at the quarterly frequency. Restricted by data
availability of 10Y TIPS, the sample runs from 2003Q1 through 2020Q2.
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Figure E.8: Implied natural rate
In this figure we show time series plots of the model-implied natural rate using the simple NK model
with temporary and permanent shocks to the natural rate, by matching the monthly US Effective Federal
Funds Rate (Fed Funds), and minimizing the distance to the 10-Year Treasury Constant Maturity Rate
(10Y Govt), and the Consumer Price Index (Core CPI), seasonally adjusted, at the monthly frequency.
The sample runs from January, 1990, through August, 2020.
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Figure E.9: Implied natural rate
In this figure we show time series plots of the model-implied natural rate using the simple NK model with
temporary and permanent shocks to the natural rate, by matching the observed US Effective Federal
Funds Rate (Fed Funds), and minimizing the distance to the 10-Year Treasury Constant Maturity Rate
(10Y Govt), the Consumer Price Index (Core CPI), seasonally adjusted, and the Output gap (HP Filter)
at the quarterly frequency from 1990Q1 through 2020Q2.
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Figure E.10: Implied inflation rates and 10-year treasury rates
In this figure we show time series plots of the model-implied inflation and the 10-year treasury rates
using the simple NK model with temporary and permanent shocks to the natural rate, by matching the
observed US Effective Federal Funds Rate (Fed Funds), the 10-Year Treasury Constant Maturity Rate
(10Y Govt), and the Consumer Price Index (Core CPI), seasonally adjusted, at the monthly frequency.
The sample runs from January, 1990, through August, 2020.
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Figure E.11: Implied inflation rates, 10-year treasury rates and output gap
In this figure we show time series plots of the model-implied inflation, 10-year treasury rates, and the
output gap using the simple NK model with temporary and permanent shocks to the natural rate, by
matching the observed US Effective Federal Funds Rate (Fed Funds), the 10-Year Treasury Constant
Maturity Rate (10Y Govt), and the Consumer Price Index (Core CPI), seasonally adjusted, and the
Output gap (HP Filter) at the quarterly frequency (1990Q1-2020Q2). Missing values indicate that the
algorithm is not able to solve the system of equations for the particular dates.
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Figure E.12: Implied inflation rates and 10-year treasury rates
In this figure we show time series plots of the model-implied inflation and the 10-year treasury rates
using the simple NK model with temporary and permanent shocks to the natural rate, by matching
the observed US Effective Federal Funds Rate (Fed Funds), and minimizing the distance to the 10-Year
Treasury Constant Maturity Rate (10Y Govt), and the Consumer Price Index (Core CPI), seasonally
adjusted, at the monthly frequency. The sample runs from January, 1990, through August, 2020.
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Figure E.13: Implied inflation rates, 10-year treasury rates and output gap
In this figure we show time series plots of the model-implied inflation, 10-year treasury rates, and the
output gap using the simple NK model with temporary and permanent shocks to the natural rate, when
matching the observed US Effective Federal Funds Rate (Fed Funds), and minimizing the distance to
the 10-Year Treasury Constant Maturity Rate (10Y Govt), and the Consumer Price Index (Core CPI),
seasonally adjusted, and the Output gap (HP Filter) at the quarterly frequency (1990Q1-2020Q2).
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E.2. Policy functions

Figure E.14: Solution of the nonlinear NK model with partial adjustment
In this figure we show (from left to right) the output gap, and the inflation rate as a function of the (initial)
interest rate in the nonlinear model (blue solid), in the linearized model (dashed) with full indexation at
trend inflation, for a parameterization (ρ, κ, φπ, φy, θ, πss, χ) = (0.03, 0.8842, 4, 0, 0.5, 0.02, 1).
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Figure E.15: Solution of the stochastic NK model
In this figure we show (from left to right, top to bottom) the optimal consumption, Euler equation errors,
optimal hours, value function, output gap, auxiliary variable x1, marginal cost, and auxiliary variable x2

as a function of the interest rate. A blue solid line shows the solution of the stochastic model with partial
adjustment, the black dotted line indicates the solution of the deterministic model.
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Figure E.16: Solution of the stochastic NK model
In this figure we show (from left to right, top to bottom) the real interest rate, natural rate, inflation,
slope of the yield curve, interest rate, 1-year yields, 5-year yields, and 10-year yields as a function of the
interest rate. A blue solid line shows the solution of the stochastic model with partial adjustment, the
black dotted line indicates the solution of the deterministic model.
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Figure E.17: Solution of the stochastic NK model
In this figure we show (from left to right, top to bottom) the optimal consumption, Euler equation errors,
optimal hours, value function, output gap, auxiliary variable x1, marginal cost, and auxiliary variable x2

as a function of the preference shock. A blue solid line shows the solution of the stochastic model with
partial adjustment, a red solid line shows the solution of the stochastic model with a feedback rule, the
black dotted lines indicate the solutions of the deterministic models.

0.95 1 1.05
0.96

0.97

0.98

0.99

1

consumption function

le
v
e
l

preference shock

0.95 1 1.05
0.96

0.97

0.98

0.99

1

hours function

le
v
e
l

preference shock

0.95 1 1.05

1

2

3

4

5

x 10
−5 Euler equation error

|e
rr

o
r|

preference shock

0.95 1 1.05

−16.75

−16.7

−16.65

value function

v
a
lu

e

preference shock

0.95 1 1.05

1.3

1.4

1.5

1.6

1.7

x1

le
v
e
l

preference shock

0.95 1 1.05

1.2

1.3

1.4

1.5

1.6

x2

le
v
e
l

preference shock

0.95 1 1.05
−0.02

−0.01

0

0.01

0.02

output gap

p
e
rc

e
n
ta

g
e
 d

e
v
ia

ti
o
n

preference shock

0.95 1 1.05
0.92

0.94

0.96

0.98

1

marginal cost

le
v
e
l

preference shock

45



Figure E.18: Solution of the stochastic NK model
In this figure we show (from left to right, top to bottom) the real interest rate, natural rate, inflation,
slope of the yield curve, interest rate, 1-year yields, 5-year yields, and 10-year yields as a function of the
interest rate. A blue solid line shows the solution of the stochastic model with partial adjustment, a red
solid line shows the solution of the stochastic model with a feedback rule, the black dotted lines indicate
the solutions of the deterministic models.
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Figure E.19: Solution of the stochastic NK model
In this figure we show (from left to right, top to bottom) the optimal consumption, Euler equation errors,
optimal hours, value function, output gap, auxiliary variable x1, marginal cost, and auxiliary variable x2

as a function of the technology shock. A blue solid line shows the solution of the stochastic model with
partial adjustment, a red solid line shows the solution of the stochastic model with a feedback rule, the
black dotted lines indicate the solutions of the deterministic models.
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Figure E.20: Solution of the stochastic NK model
In this figure we show (from left to right, top to bottom) the real interest rate, natural rate, inflation,
slope of the yield curve, interest rate, 1-year yields, 5-year yields, and 10-year yields as a function of the
interest rate. A blue solid line shows the solution of the stochastic model with partial adjustment, a red
solid line shows the solution of the stochastic model with a feedback rule, the black dotted lines indicate
the solutions of the deterministic models.
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E.3. Impulse responses

Figure E.21: Responses to monetary policy shocks (temporary and permanent)
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected monetary
policy shocks to both the (initial) interest rate (−0.025) and the inflation target rate (−0.0075), with
effects for the output gap, the inflation rate, and the level/slope of the interest rate in the nonlinear model
(blue solid), in the linearized version (χ = 0, dashed), and in the three-equation NK model (dotted).
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Figure E.22: Responses to monetary policy shocks at near zero interest rates
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected monetary
policy shocks to both the (initial) interest rate (−0.025) and the inflation target rate (−0.0075), with
effects for the output gap, the inflation rate, and the level/slope of the interest rate in the nonlinear model
(blue solid), in the linearized version (χ = 0, dashed), and in the three-equation NK model(dotted).
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Figure E.23: Responses to monetary policy shocks (temporary and permanent)
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected monetary
policy shocks (0.01) either permanent (or target shock, left) or temporary (or initial interest rate, right),
with effects for the interest rate (red dashed) and inflation (blue solid), and output in the nonlinear model
(cf. Uribe, 2017, Figure 3). Effects for the three-equation NK model are similar (not shown)
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Figure E.24: Responses to monetary policy shocks (temporary and permanent)
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected monetary
policy shocks (0.01) either permanent (or target shock, left) or temporary (or initial interest rate, right),
with effects for the real interest rate in the nonlinear model (cf. Uribe, 2017, Figure 4).
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E.4. Simulated shocks

Figure E.25: Responses to monetary policy shocks (temporary and permanent)
In this figure we show (from left to right, top to bottom) the simulated responses for unexpected shocks to
the (initial) interest rate (−0.025), and the inflation target rate (−0.005), with effects for the output gap,
the inflation rate, and the level/slope of the interest rate (blue solid), and the no-target shock scenario
in the three-equation NK model (black dashed, π∗

t = 0.02, χ = 0).
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Figure E.26: Simulated responses to hypothetical shocks (2001-2003)
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected shocks to
the interest rate (−0.05) and the inflation target (−0.015), with effects for the output gap, the inflation
rate, the level of the interest rate, and the 10-year yields (blue solid), the no-target shock scenario (black
dashed, π∗

t = 0.02), and the pre-shock scenario (dotted); predicted initial values (circle) and data (cross).
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Figure E.27: Implied yield curves for the hypothetical shocks (2001-2003)
In this figure we show the yield curve response to unexpected shocks to the (initial) interest rate (−0.05)
and the inflation target rate (−0.015), with effects for the nominal and real yields (blue solid), the no-
target shock scenario (black dashed, π∗

t = 0.02), and the pre-shock scenario (dotted); observed yields are
indicated with a cross (TIPS are available from January 2003).
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Figure E.28: Simulated responses to hypothetical shocks (2003-2007)
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected shocks
to the (initial) interest rate (0.04), the inflation target (0.015) and preferences (−0.025) and its effect on
the output gap, the inflation rate, the level of the interest rate, and the 10-year yields (blue solid), the
no-target shock scenario (black dashed, π∗

t = 0.005), and the pre-shock scenario (dotted).
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Figure E.29: Implied yield curve for the hypothetical shocks (2003-2007)
In this figure we show the yield curve response to unexpected shocks to the (initial) interest rate (0.04),
the inflation target rate (0.015), and preferences (−0.025), with effects for the nominal and real yields
(blue solid), the no-target shock scenario (black dashed, π∗

t = 0.005), and the pre-shock scenario (dotted);
observed yields are indicated with a cross.
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Figure E.30: Simulated responses to identified shocks (2003-2007)
In this figure we show (from left to right, top to bottom) the simulated responses to the identified shocks
(cf. Figure 8), with effects for the output gap, the inflation rate, the interest rate, and the 10-year yields
(blue solid), and the pre-shock scenario (dotted); predicted initial values (circle) and data (cross).
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Figure E.31: Implied yield curves for the identified shocks (2003-2007)
In this figure we show (from left to right, top to bottom) the implied yield curve for the identified shocks
(cf. Figure 8), with effects for the nominal and real yields (blue solid), and the pre-shock scenario (dotted);
observed yields are indicated with a cross.
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Figure E.32: Simulated responses to hypothetical shocks (2007-2010)
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected shocks
to the (initial) interest rate (−0.0475), the inflation target rate (−0.02), and preferences (−0.1), and its
effect on the output gap, the inflation rate, and the level of the interest rate, and the 10-year yields
(blue solid), the no-target shock scenario (black dashed, π∗

t = 0.02), and the pre-shock scenario (dotted);
predicted initial values (circle) and data (cross).
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Figure E.33: Implied yield curve for the hypothetical shocks (2007-2010)
In this figure we show the yield curve response to unexpected shocks to the (initial) interest rate (−0.0475),
the inflation target rate (−0.02), and preferences (−0.1), with effects for the nominal and real yields (blue
solid), the no-target shock scenario (black dashed, π∗

t = 0.02), and the pre-shock scenario (dotted);
observed yields are indicated with a cross.
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Figure E.34: Simulated responses to identified shocks (2007-2010)
In this figure we show (from left to right, top to bottom) the simulated responses to the identified shocks
(cf. Figure 8), with effects for the output gap, the inflation rate, the interest rate, and the 10-year yields
(blue solid), and the pre-shock scenario (dotted); predicted initial values (circle) and data (cross).
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Figure E.35: Implied yield curves for the identified shocks (2007-2010)
In this figure we show (from left to right, top to bottom) the implied yield curve for the identified shocks
(cf. Figure 8), with effects for the nominal and real yields (blue solid), and the pre-shock scenario (dotted);
observed yields are indicated with a cross.
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Figure E.36: Simulated responses to hypothetical shocks (2010-2011)
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected shocks
to the inflation target rate (0.02), the Wicksellian rate (−0.015), and preferences (−0.15), and its effect
on the output gap, the inflation rate, the level of the interest rate, and the 10-year yields (blue solid),
the no-natural rate shock scenario (black dashed, r∗t = 0.03, π∗

t = 0.02), and the no-target shock scenario
(dotted, r∗t = 0.03, π∗

t = 0); predicted initial values (circle) and data (cross).
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Figure E.37: Implied yield curve for the hypothetical shocks (2010-2011)
In this figure we show the yield curve response to unexpected shocks to the inflation target rate (0.02),
the Wicksellian rate (−0.015), and preferences (−0.15), with effects for the nominal and real yields (blue
solid), no-natural rate shock scenario (black dashed, r∗t = 0.03, π∗

t = 0.02), and the no-target shock
scenario (dotted, r∗t = 0.03, π∗

t = 0); observed yields are indicated with a cross.
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Figure E.38: Simulated responses to identified shocks (2010-2011)
In this figure we show (from left to right, top to bottom) the simulated responses to the identified shocks
(cf. Figure 8), with effects for the output gap, the inflation rate, the interest rate, and the 10-year yields
(blue solid), and the pre-shock scenario (dotted); predicted initial values (circle) and data (cross).
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Figure E.39: Implied yield curves for the identified shocks (2010-2011)
In this figure we show (from left to right, top to bottom) the implied yield curve for the identified shocks
(cf. Figure 8), with effects for the nominal and real yields (blue solid), and the pre-shock scenario (dotted);
observed yields are indicated with a cross.
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Figure E.40: Simulated responses to hypothetical shocks (2007-2011)
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected shocks
to the (initial) interest rate (−0.0475), the Wicksellian rate (−0.015), the logistic process (d̄ = 0.79) for
preferences (−0.15), and its effect on the output gap, the inflation rate, and the level/slope of the interest
rate (blue solid), the no-natural rate shock scenario (black dashed, r∗t = 0.03), and the pre-shock scenario
(dotted, preferences −0.025); predicted initial values (circle) and data (cross).
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Figure E.41: Implied yield curve for the hypothetical shocks (2007-2011)
In this figure we show the yield curve response to unexpected shocks to the (initial) interest rate (−0.0475),
the Wicksellian rate (−0.015), and logistic process (d̄ = 0.79) for preferences (−0.15), with effects for the
nominal and real yields (blue solid), the no-natural rate shock scenario (black dashed, r∗t = 0.03), and
the pre-shock scenario (dotted, preferences −0.025); observed yields are indicated with a cross.
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Figure E.42: Simulated responses to hypothetical shocks (2004-2005)
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected shocks
to the (initial) interest rate (0.015), and preferences (−0.1), and its effect on the output gap, the inflation
rate, the level of the interest rate, and the 10-year yields (blue solid), and the pre-shock scenario (dotted);
predicted initial values (circle) and data (cross).
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Figure E.43: Implied yield curve for the hypothetical shocks (2004-2005)
In this figure we show the yield curve response to unexpected shocks to the (initial) interest rate (0.02),
and preferences (−0.15), with effects for the nominal and real yields (blue solid), and the pre-shock
scenario (dotted); observed yields are indicated with a cross.
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E.5. Alternative shock dynamics

Figure E.44: Generalized logistic preference shock
In this figure we plot the dynamics of the logistic process, ddt = ρd(dt − d̄) (1− dt) /(1 − d̄) dt, and the
Ornstein-Uhlenbeck (OU) process, d log dt = −ρd log dtdt, for different parameterizations of ρd and d̄. It
shows that the dynamics are similar if the lower bound d̄ is sufficiently far away from d0 > d̄. For d̄ = 0
we obtain the (standard) logistic growth model ddt = ρddt (1− dt) dt (cf. Section A.2).
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