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C. New Keynesian analysis

C.1. Which policy instruments?

The recent episodes shed light on the set of central bank instruments. They demonstrated
that the (short-term) nominal interest rate, traditionally considered as the most important
instrument, cannot be used as a sufficient description of monetary policy. In particular,
the monetary authority may focus on other longer maturities.! Such policies would need
to control the long-ends of either the nominal and/or the real yield curve. As the inflation
target is under the discretion of the monetary authority, there might be changes in its
perception by economic agents due to communication or other measures.

A large body of literature and anecdotal evidence show that unconventional policies, in
particular forward guidance and quantitative easing (QE), are important monetary policy
instruments too. Unless one adds financial frictions (e.g., Gertler and Karadi, 2011), or
assumes imperfect substitutability between different maturities (cf. Chen, Curdia, and
Ferrero, 2012), the NK model predicts that arbitrary QE operations are irrelevant. This
is important because inflation seems to be unaffected by the large-scale asset purchase
(LSAP) programmes. Hence, QE as such is not considered a separate policy instrument.?
In contrast, forward guidance, which also includes the communication of the inflation
target, has strong effects in the standard NK model (Del Negro, Giannoni, and Patterson,
2015; Campbell, Fisher, Justiniano, and Melosi, 2016). While the traditional instrument
targets the short-term interest rate, the unconventional policy measures are commonly
targeting interest rates at higher maturities (or the longer-end of the yield curve).

There is also an important difference with respect to forward guidance for the two
Taylor rules specified in (3a) and (3b). Pure ‘communication’ about future policy induces
a reaction of the interest rate in the feedback model due to the effect on inflation, while
in the partial adjustment model interest rates are immobile on impact (pre-determined),
e.g., with respect to changes in long-run targets. So an immediate challenge for empirical
research is to identify permanent shocks, and also to which extent an observed monetary

policy shocks contain information about (perceived) changes in long-run targets.

C.2. Do higher interest rates raise or lower inflation?

Following the discussion on the policy instruments we now address the question of whether
higher interest rates raise or lower inflation. In fact, the NK model for ¢ > 1 makes sharp

predictions regarding the systematic link between interest rates and inflation, but at the

!Swanson and Williams (2014) find that interest rates with a year or more to maturity were surprisingly
unconstrained and responsive to news throughout 2008 to 2010.

2As a caveat, LSAPs could affect term premia, a channel which is absent in the simple NK model and
will be discussed later. Moreover, the LSAPs could also affect agents expectations of the future course of
monetary policy (cf. Wright, 2012), which may be captured by ‘shocks’ to the long-run target rates.



same time can explain both the short-run negative response and the long-run positive
Fisher effect. As shown below, the minimal set of ingredients, in a forward-looking general
equilibrium framework with active monetary policy, ¢ > 1, to produce a negative short-run
impact of interest rates on inflation is the partial adjustment model.

For the partial adjustment model, the inflation rate is a negative function of the interest
rate (cf. Figure 2).> The figure plots inflation for different interest rates, which shows the
short-run negative relationship. The intuition is that the interest rate depends positively

on the level of inflation, but negatively on its time derivative,
iy = (my — ) +if — 0t diy/dt, 6> 0. (C.1)

For a given value di,/ dt # 0, the larger the central bank’s desire to smooth interest rates
over time (the lower 6), the larger the second effect: Suppose that after a contractionary
monetary policy shock i; > i}, so the (after-shock) time-derivative of the interest rate is
negative di;/dt < 0, which reflects the slope of the impulse response function. Higher
interest rates are related to lower inflation rates, because the inflation rate is determined
by both the (long-run) Fisher relation and the mean reversion back to the target level.
In our solution, inflation falls by 0.5 percentage points on impact for an 1 percentage
point increase in interest rates. To summarize, the short-run response of inflation rates on
impact is negative, while the positive relationship (higher inflation targets imply higher
interest rates) is still given by the long-run Fisher relation i; = p + ;. Higher interest
rates unambiguously imply higher yields to maturity of long-term bonds.

So what happens if central banks raise interest rates? If the increase is considered by
agents not only as temporary, but after all reflects a permanent change in the target rate,
inflation stability in the Fisher equation will result in higher long-run inflation.* But can
higher permanent interest rates reduce inflation in the short run? Indeed this is possible if
the ‘target shock’ is accompanied by concrete policy action, i.e., a raise in the short-term
interest rate.” In the partial adjustment model, this induces the traditional negative effect
on inflation, which may even dominate the long-run Fisher effect temporarily. However,
inflation cannot temporarily decrease in the simple feedback model. Unless we consider a
persistent shock to the feedback rule any deviation from the equilibrium instantaneously
jumps back. Any temporary shock would evaporate, and the interest rate accommodates
its equilibrium level (infinitely fast). Only for the case where 6 < 0o, a temporary change
induces some persistence and thus own equilibrium dynamics.

Let us consider a concrete example. Suppose that variables in the simple NK model

3In the simplified framework, we solve a standard boundary-value problem (perfect-foresight solution)
and plot the initial values for different starting values (cf. Section 3 for a detailed description).

4For example, the shock is interpreted as an inflation target shock (cf. Rupert and Sustek, 2019).

5 Another possibility is to add long-term debt and use the fiscal theory (FTPL) to pin down inflation
(following McCallum, 2001; Del Negro and Sims, 2015). Cochrane (2017a) shows that the FTPL produces
a temporary reduction in the inflation due to the decline in the nominal market value of the debt.



are at steady state and the long-run interest rate ¢; (or the inflation target 77) is lower by
50 basis points (bp), and also the short-term interest rate i; is decreased by 250 bp. The
concrete policy action is 250 bp (observed), but only a fraction 1/5 of the interest rate
cut is permanent (discretionary) leaving the remainder 4/5 being only temporary and not
reflecting changes in policy targets. In the long run we expect lower inflation due to the
Fisher relation i; = p 4+ 7, but temporarily the traditional negative trade-off dominates
the Fisher effect (cf. Figure E.25). Our simulation exercise shows that on impact the
inflation rate increases to 2.5% and then both inflation and interest rates accommodate
their new equilibrium levels after about 10 quarters. This perspective on ‘monetary policy
shocks’ consisting of temporary and permanent shocks offers an alternative explanation
for the so-called ‘prize puzzle’ (going back to Sims, 1992; Eichenbaum, 1992).6 So at the
risk of oversimplifying: Higher short-term interest rates (Fed Funds) decrease inflation,

whereas higher long-run interest rates (inflation target) increase inflation.

C.3. AD-AS model interpretation

Consider the IS curve (1) , which depicts a relationship between the interest rate and total
demands for goods. Demand for goods increase over time (the growth rate is positive) if

the real interest rate is higher than the natural rate. Solving forward yields

= /twm ~ (i — m))ds

or

~

Ty = TAt — (’lt — ’ﬁ't) (CQ)

which can be interpreted as the NK interest rate channel (capital fixed). It shows that an
increase in the (real) expected future interest rates depresses demand.
Once we combine the IS curve with the Taylor rule, we obtain a demand relationship

or the aggregate demand (AD) curve, e.g., with feedback rule (3a),
dzy = ((¢ = D) (m — mp) = (re — rp))dt,
or with partial adjustment
dz; = ((¢p — ) (m — 77) — (re — r7))dt — 07" diy.

A higher rate of inflation ceteris paribus is associated with a lower aggregate demand

for output for ¢ > 1, and the change in aggregate demand is positive ensuring that the

6Similarly, a cost-channel in addition to the demand channel is likely to generate a positive response on
impact, but has little empirical support (see Castelnuovo, 2012, and the references therein). Castelnuovo
and Surico (2010) show that accounting for expected inflation may also explain the ‘puzzle’.



system converges back to equilibrium where aggregate demand meets its supply.

Solving forward yields the traditional negative relationship (feedback rule)

= /too<<¢—1><ws—w:>—<rs—r:>>ds = —@-Drt,

T ==1/(¢ =Dy +1/(¢ — D), (C.3)

The function shifts upwards with positive (temporary) shocks to the natural rate and
downwards with positive (permanent) shocks to the Wicksellian natural rate 7} or negative
shocks to the inflation target 7}. Consider that r; falls below the Wicksellian natural rate
r; such that 7, is negative, other things equal. Because the shock is unanticipated, the
AD curve shifts downwards lowering aggregate demand. The extent of this shift in the

aggregate demand depends on the aggregate supply (AS) response in (2),
Ty — T, = KJ/ e PV dv = ki, (C4)
t

with £ — 0 the AS curve is flat (fixed prices, no price effects) and with kK — oo the
AS curve is vertical (frictionless limit, purely inflationary), The key point here is that if

inflation is higher than its target in the short run, output will be above potential.

D. Technical proofs and derivations

D.1. Technical details

#da, on p.17: The household can trade on Arrow securities (excluded to save on notation)
and on a nominal government bonds b; at a nominal interest rate of ;. Let n; denote the
number of shares and p? the equilibrium price of bonds. Suppose the household earns a
disposable income of i;b; + pywly + p Ty + piF ¢, where p; is the price level (or price of the
consumption good), w; is the real wage, T} is a lump-sum transfer, and f, are the profits
of the firms in the economy; the household’s budget constraint is:

dn, = by — pec + prwely + piTy + pef o dt. (D.5)

Jis

Let bond prices follow:
dp; = aupdt (D.6)

in which oy denotes a price change, which is determined in general equilibrium (in equilib-
rium prices are function of the state variables, for example, by fixing «; the bond supply

has to accommodate so as to permit the bond’s nominal interest rate being admissible).



The household’s financial wealth, b; = n;p?, is then given by:
dby = (i:by — prcy + prwily + p Ty + pef ¢)dt + aybydt, (D.7)
Let prices p; follow the process:
dp; = mypedt (D.8)

such that the (realized) rate of inflation is locally non-stochastic. We can interpret dp;/p;
as the realized inflation over the period [t,¢ + dt] and 7, as the inflation rate.
Letting a; = b;/p, denote real financial wealth and using 1t6’s formula, the household’s

real wealth evolves according to:

da, — db, ﬁd by — itby — pec + pewely + piTy + pekF v + by 4 Eﬂ'tptdt
Yz pt Pt pt
or:
da; = ((ir + ap — m)ary — ¢ +wily + T; + F ) dt (D.9)

Since government bonds are in net zero supply, b; = 0, it implies oy = 0 for all ¢. =

#dxy, on p.19: Differentiating x;, in (15) with respect to time gives:

1
at dzyy = Ay +(p+0)r1y
l—¢
(1- 5)7TtEt/ A e~ (PTO)T—1) (ﬁ) eJi (1=e)xs dSyT dr
t pr
1—6 T — *
o O [eJ7 —e)xntds
+Et/ N, e (et (T—1) <ﬁ) [ }yT 4
t Pr at

= Ayt (p+o+ (1 —eg)m)a
0o 1—e Y (1—e)xms ds
+Et/ A e~ (PHT—1) <&) 0 ¢! - }der
t Pr at
= Ayt (p+ o+ (1—eg)m)a
00 1—¢ T *
+Et/ e~ (p+8)(T—t) & eftT(lfe)sz dsa [j;t (]' — g)Xﬂ-S dS} y dr
t pr ot !
= Ayt (p+ 0+ (1 —e)(m —x7())z1e

1—¢ T *
+Et/ e~ (p+o)(r—t) [ Pt e (1=e)xm; ds(l _E)X/ ory dsy, dr
t Pr ¢ Ot

or (17) in the main text. A similar procedure gives (18). =



#dmy on p.19: Differentiating (19), we obtain the inflation dynamics as:

d(m —xm;) = (1) d
= o (II})" 66_ : (L1 dagy — oy /2t day)
= (5(1_[ = 8(1/1’2tdl’2t—1/1’1td1’1t)

)
= 0 (II)"7° (mp — X7} + (mey/may — 1 xy ) Neyy) dt
+ (L =e)(m — xmp)) (me = xmi + (mey /= 1/ ) M) di

which is (20) in the main text. m #dv; on p.21: Differentiating (25), we get:

dt —00 dt pt

t A e
= 0(I)™" — (0 +exm) / Se— =) —e [Exms ds (p_) &
Y2

‘1 o
_dvt = 5(1_[:)_54_5/ — Je0t=T)—e [r x7s ds (l) dr

/ Se—0t=7) )—e [ xr dsp” 5p§ 1Edptd7_

= () + (e(m — X)) — 0) v (D.10)

which is (26) in the main text. m

#F on p.21: For aggregate profits, we use the demand of intermediate producers in (24):

1 .
Fe = / <@ — mct) Y di
0 Y2
1

which is (27) in the main text. =



#V (Z, X;) on p.23: The HIB equation (29) in scalar notation reads

(et,lt) 1+
+ ((’lt — Tt)at — ¢+ wtlt -+ Tt + Ft) Va

+(0¢, (e — 7)) + 00, (Yr/yss — 1) — 0 — 7))V + 507 Vi
+ (5 (IT7) " + (e(my — x7}) — 0) vt) V.,
—(pqlogd; — %Ufl)dtvd + %U?zdfvdd

l1+19
oV (Z;Yy) = maxdt{logct—w L }

—(palog Ay — %ai)AtVA + %aiA?VAA

—(pg log s44 — %aﬁ)sgivg + 50232 V- (D.11)

g-g;t

[ |
#dV, (2, Xy) on p.24: From D.11, the concentrated HJB equation in scalar notation reads

U(Zy; Y)Y
pV(Zt, Yt) = dt log C(Zt; Yt) — dtw%

+ ((ir — m)ay — (Zy; Yo) + wil(Z; Yo) + Ty 4+ F o) Vs
+(0¢, (e — 7)) + 00, (Yr/yss — 1) — 0 — 7))V + 503 Vi
+ (0 (1) + (e(me — x77) = 0) i) Vs

—(pglogdy — 303)diVa + 5057 Vag

—(pylog Ay — %ai)AtVA + %aiA?VAA

—(pg log s44 — %03)597,5\/9 + %azsi’t%g. (D.12)

Using the envelope theorem, we obtain the costate variable V, as:

pVa = (it —m)Va+ ((te — m)ar — o + wily + Tp + F ) Vaa
+(0¢(me — 7}) + 00, (ye/yss — 1) — 0(ix — i}))Via + 307 Viia
+ (0 (T) ™" + (e(m — x7t) = 0) vt) Vaa
—(palog dy — 503)diVaa + $03d; Vaaa

—(palog Ay — L0%)AVay + 103 A2V,
_<pg log st — %052]>897t‘/;’a + %(7282 Vyga: (D.13)

g-g;t

An alternative formulation in terms of differentials is:

(p— i+ m) Vadt = Vyday + (diy — 0,dBiy)Vie + 207 Vi + Viudoy
+ (ddt — OddtdBd,t) ‘/;ja + %UZd?‘/ddadt

-+ (dAt — O'AAtdBA,t) VAa -+ %O'?AA?VAAadt + (ngﬂg — O'gSgﬂgng,t) ‘/ga -+ %U;S;t‘/ggadt



or

(p— iy + ) Vodt + 04diVgodBay + 04 AV aadBay + 0459:1Vyad Byt + 041 Vied By
- ‘/aada't + V;adlt + 1 2 2‘/22(1 + ‘/vadvt
+Vydd, + %afldfvdadt + Vaod Ay + 205 A7 Vaodt + Vyads, s + 20282 Vadt.

2797g.t

Observe that the costate variable in general evolves according to:

dV;z - V;wdat + ‘/mdzt + 102‘/22adt + V d'Ut

+Vaaddy + 3075d; Vaaadt + Vaad Ay + 505 A7Vanadt + Viads g + 307052 Vgadt
= (p—ig+m)V,dt
+0-ddtv;iadBd,t + OAAtVAadBA,t + Ogsg,tv;yang,t + O-i‘/iadBi,ta
which is (35) in the main text. m
# mgs/my (SDF) on p.24: Starting from (35):
AV, = Lav, - 1o Vieq, QAQVA“dt o2 Yongy 152 Vi
WVa = v, a_iad ty2 2 L2 _509591?‘/2 __mv2
: Via Via Voa
= (p — 1t + Wt)dt + OddtvddBd,t + UAAtVidBA,t + Ugsgiving’t
V;a 1 2 QVda 2 QVAa 1.2.2 VQG 2‘/;(1
+cri7adB,~7t 50ad; —= 0z —4dt — o5 A; 0F dt — §ogsgtvgz dt — 2 ’V? 2.

For s > ¢, we may write:

e—p(s t) ( )
(Ztvyt)
Sy sVd 2 12 sVA 2 42
— [ (i — mu)du — 3 [, e ogd,du 2 ¢ vaoadydu
1 s Vga 2,2 1 2
exp =5 )i 72055, Ldu ft V2cr du

+ [ Va10,4d,dByy + [ Y204 A, dBAu + 7 anogsgungu + [ Y20,dB;,

which denotes the equilibrium SDF m,/m; in (36). m



#PDE approach on p.33: Using [t6’s lemma:

AP = 0(p(mi = 7}) + 6, (e/yss — 1) = (i — i) (OP™) [0ir) dt + Lo (PPN ) (9i,)?) dt
H(0(1 = (e = 1)(my — xm7) /8) "7 + (elm — x77) — O)u) (AP J9vy) dt
— (palogd; — 102) d (AP J8dy) dt + Lo2d2(8* PN /(9d,)?) dt
— (palog A, — 10%) A, (0PN )9 A,) dt + 1% A2(9* P J(9A,)2) dt
— (,og log sy — %03) sg,t(ﬁPt(N)/asg,t) dt + %Uzsit(GQPt(N)/(asgi)Q) d¢
+(0P™ 0i)o:dB;y + (0PN )0dy)oady AByy + (0P JOA) o 4 Ay dBy,
—l—(@Pt(N) /084.4)0485:dBy+,

where the relevant equations are

AN = (p— i+ m)Ndt
+04diNgdBgy + 0 aAANAdBay 4 04541 \gd By + o NidB;
driy = ((p+0—(e—1)(me — x7}))x1e — di /(1 — 5454.4)) dt
daeay = ((p+ 0 —e(m — xmy)) xar — meydy /(1 — $4544)) dt
dis = 0(dn(me — 7)) + &y (ye/yss — 1) — (ir — iy))dt + 0:d B s
dv, = (6(1— (e —1)(m — x7})/0) 1% + ((m — x7}) — 6)vy)dt

ddt = — (pd log dt — %0’3) dtdt + O-ddtdBdi
dA; = —(pslogA; — Lo%)Ardt + 04 AdBay
dsg; = —(pg log s — %Uz)sg,t dt + 04544 B, ;.

Plugging into the pricing equation and eliminate time, we obtain the PDE for the risk-free
bond with >\Z = _6i>\t7 )\g = _6g>\t/sg,t7 )\A = _6A)\t/At7 and )\d = (1 — 6d))\t/dt' |

D.2. Obtaining the Euler equation

Using the first-order condition (30) and (35), we obtain the implicit Euler equation:

o(2) = omichm (2)

40 qd; <l — d—;cd) dBg; — aAAtd—;cAdBAt - agsg7ti;cgd8g,t - amd—écidBi,t.
a G ; ; ;
Vaa = = (de/c}) ca+1/ct, Vaa = — (di/c}) ca, Voo = — (di/¢}) cg, and Viy = — (dy/c}) ¢; are
expressed in terms of derivatives and levels of the consumption function. This equation
has a simple interpretation: the change in the marginal utility of consumption depends
on the rate of time preference minus the effective real interest rate and four additional

terms that control for the innovations to the four shocks to the economy.

10



Hence, by applying [t0’s formula we obtain the Euler equation:

o(§)- (&) o-sem (&)

dy  d? dy d d
‘o4 <—t - _Cd> dBa; — UAAt_CAdBAt UgSg,t_;ngBgt Im ;CZdBl t]
c ct Ci G
AN 2B d? d; d
+(—t) (ad (- 2—ca+ Z ) 2A2_0A+052 _ZC?;JFU_Q ) dt,
c c c} c; Ct G

which simplifies to

Ct dy 2 2d;12 22d;12 2d;12
+ o2 = —2c4+— + 05 AT = +oist ,—c 4+ o;—c; | dt,
( <dt Cd ¢ ) A tCt A g°g.t ¢ g i ¢ )

or

2 2 2

d A;
de; = —(p— i+ m)edt + o2-LcAdt + o4~ cAdt+o§ Pt 2dt+a cidt
Ct Ct Ct Ct

+ogcqdidBay + 0 aAicadBay + 04541c,d By, + 0,¢,dB; 4
—cipylog dydt + %ctafldt — cqdy0o3dt, (D.14)

which is (38), and ¢; = ¢(Z;; Y;) denotes the household’s consumption function. A similar
approach implies the Euler equation for the alternative shock process as:

A2 s
de; = —(,O—Zt+7Tt)Ctdt+0A dt+cr§ 9t 2dt+0 2dt
Ct Ct Ct

+o4AicadBay + 045,c,dBy + 0ic;,dB;

D.3. Equilibrium

We define the recursive-competitive equilibrium of the nonlinear NK model with shocks by
the sequence { g, ly, az, mcy, T14, o, F oy Wy, i, 1y, ge, Ty e, w00, L v, g, dyy Ay, 894}, Which

is determined by the following equations:

11



e Euler equation, the first-order conditions of the household, and budget constraint:

Equation 1
dey = —(p — iy + w1 — 0%y — 0.0 — 07C; + pglog dy + (Ca(l — Eq) — §)o5)cdt
+04CactdBay + 0 acacid By + 04C,c,d Byt 4 0i¢,c0d B, 4
Equation 2
@Z)lf = Wy
Equation 3
difcy =N\
(redundant)

da; = ((t — oy —mp)ay — e +wily + Ty + Fy) dt

e Profit maximization is given by:

Equation 4
= 5i 1%

Equation 5

dzye = ((p+ 0+ (1 — ) (m — xmy))z1e — Aeg) i
Equation 6

dzos = ((p+ 6 — e(me — x7}) )20 — Aemcsyy) dt
Equation 7

Fie=(1—mcu)y

Equation 8

Wt = Atht

e Government policy:

Equation 9
Equation 10

gt = SgSg.tYt

(redundant)

Ty = —igay — SgSg,tYt

12



e Inflation evolution and price dispersion:

Equation 11

J .
Ty — XTy = - ()= -1)

Equation 12
dv, = (6 (1))~ + (e(my — x7;) — 0) vy) dt

e Market clearing on goods and labor markets:

Equation 13
Yy = ¢+ g;  (expenditure)
Equation 14

A
y, = —1, (production)
Ut

(redundant)

Yy = wily + F¢  (income)

e Stochastic processes follow:

Equation 15
ddt = — (pd lOg dt — %O’z) dtdt + O-ddtdBd,t

Equation 16
dA, = — (PA log A; — %ai) Aydt + 04 Ay d By,

Equation 17
dsgs = — (pyl0g S0 — 307) Sgudt + 0y5,4d By,

Note that using the household’s budget constraint, we get in equilibrium:

dCLt = ((Oét — 7Tt)CLt —C— Gt + yt>dt

= (O[t — Wt)atdt,

where for da; = 0 either oy, = m; and/or a; = 0 for all ¢ (here a; = 0 because by = 0).

Moreover, in equilibrium the laws of motion for the discounted expected future profits,

13



x1, and discounted expected future costs x5, are not direct functions of the controls:

dzye = ((p+0— (e = )(m — xmp))wre — Aye) di
= ((p+0— (e =1)(m — xmy))w1s — di /(1 — 5g544))) di

and similarly:

drey = ((p+0 —e(m — x7y)) T2p — Myemncy) dt
= ((p+0—ce(m — xm)) T2 — mepdy /(1 — 8484,¢)) dt

Note that the TVC requires that lim; ., e ”'EqV(Z;) = 0, in which Z; denotes the

state variables along the optimal path in line with general equilibrium conditions.

D.4. Proof of Proposition 1

We insert de; from (38) and the law of motions for the state variables

d? A? s, 1
—(p — iy + m)cpdt + o3t cAdt + o4 =L dt + azi’tczdt +o?—cidt
Cy Ct Ct Ct

+o4cqdidBay + 0 aArcadBay + 04544c,d Byt + 0,¢,dB;
—cipylog didt + %ctafldt — crfidtcddt
—%ciicr? dt — %cdd(oddt)zdt — %CAA(O'AAt)th — %cgg(agsgi)th =
Co ((1p — m)ay — ¢ +wily + Ty + F o) dt
+ci((0d, (e — 77) + 00, (y/yss — 1) — 0(i; — i7))dt + ;A By ;)
e, (6(1 = (e = 1) (mp — x7})/6) T + (e(my — xwt) — 8)vy)dt
+ea(— (pA log A; — %0?4) Aydt + 04 AdBay)
+ci(— (pglogdy — 307) dydt + 04dydBay)
+c,(— (pg log s44 — %03) Sgrdt + 04558, )

14



Collecting terms we may eliminate time (and stochastic shocks) and arrive at

—(p — iy + m)d,V, 1At
2

+0? dtvt_l (Vo2 = 2d V2V, W + 7V, V2 dt
2
2 Sgt 1,4y ,2 21— 41,2
+0AdtV -d;V,” VAdtJragdé -d;V, 'V, dt+aldv A7V, dt

+04(V,t = diV, Vaa)did By — 0 aAidi V2 VoadBay — 048,:d:V, 2Va,d By,
—0,diV, Veyd By — &V, pglog dydt + $d,V, ' o5dt
—oady(V, = diV, 2 Voa)dt — £ (24,V, V2 — dV, V) oF dt
— 2 (=2V, P Vaa + 2d,V, PV — diVy *Vaaa) (0ady)?dt
—1 2V, PV — diV, Vaaa) (04 Ay dt
=1 (2d,V, V2 — AV, P Vagg) (045g4)°dt =
—d, V.7 Voo (i — 7)) ay — ¢ +wily + Ty + F ) dt
~di V2 Voi((00 (1 — 7)) + 00, (ys/yss — 1) — (i — 1;))dt + 0:d By 1)
—dyV, Vo (8(1 = (€ = 1)(my — x77) /6) 7% + (e(my — xm;) — O)vy)dt
—d, V.7 2 Vu(— (pA log Ay — %ai) Adt + 04 AdBay)
+(V, ' = diV, Vo) (— (pglog di — 107) dedt + 04didByy)
—d; V.~ 2Vag( (pg log sy — %aﬁ) Sg1dt + 04551 Bg )

which can be simplified to

—(p— i+ m)Vodt =
— (3¢ — m)ar — et + wely + Ty + F 1) Vaadt
(00 (1 — 77) 4+ 00, (ys/Yss — 1) — O(iy — i) Vot — 3 Vaiso; dt
—(6(1 = (e = 1) (my — x7}) /0) 15 + (e(my — 7)) — 6)vy) Vit
+ (palog Ay — 20%) AVaadt — LVoaa(oaAy)*dt
+Vaa (pglog dy — £07) dpdt — $Voggoid;dt
+Vag (,og log sg4 — 1 ) Sg¢dt — Vagg(agsgt) dt

such that (40) must hold as an identity.

D.5. Steady state values

Steady-state. Suppose that without shocks the economy moves towards its steady state.

Setting the variance of shocks to zero yields the deterministic steady state values.
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e Euler equation, the first-order conditions of the household, and budget constraint:

Equation 1
T, =Tes =13 — P =1lgs— P
Equation 2
Pl Cos = Wes
Equation 3
dysCyy = Ass
e Profit maximization is given by:
Equation 4
T — € Tass
e =12
Equation 5
0=(p+0—(e=1)(1 = x)Tas)T1,65 = Ass¥ss
Equation 6
0=(p+ 0 —e(l = X)Tss) V2,55 — AssYssMCss
Equation 7
Fss = (1 — messvss)Yss
Equation 8

Wss = Assmcss

e Government policy:

Equation 9
(This equation is an identity in the steady state.)
Equation 10

Jss = S¢Sg,s5Yss

e Inflation evolution and price dispersion:

Equation 11

Equation 12



e Market clearing on goods and labor markets (one condition is redundant):
Equation 13

Yss = Css + gss  (expenditure)
Equation 14

Ass
Yss = —lsg (pl"oduction)
(Y

Ss

(redundant)

Yss = Wsslss + F 55 (Income)
e Stochastic processes:

Equation 15

des =1

Equation 16
Ay =1

Equation 17
Sg.6s = 1

Given the level of steady-state inflation, around which the model often is linearized,

we obtain the following steady-state values. Using Equation 1, we obtain:
iy =T, +p & lgg=Tg+p

Using Equation 11, we obtain the steady-state value for the price ratio:
I, = (L4 (1= o) (1 = X)mas/0)

From Equation 12, we obtain the steady-state value for price dispersion as:

Vss =

0 —e(l = x)mss
Using Equations 5 and 6 we can solve for the steady-state value of the marginal cost:

p+0—e(l—x)mss
R R R

McCgs =

17



which by inserting Equation 4 gives:

p+o—e(l—x)mss e—1_,
HSS
pro—(e=DA-x)7ms ¢

MCgs =

Hence, we obtain

1,8 = dss /(1 = 8¢8g,5)(p + 0 = (¢ = D)(1 = X)7ss))

and
T2 55 = (1 - 1/€)x1788H:s

Using Equation 8, we obtain

Wss = AgsMCss
Using Equation 14, we obtain

Yss = Asslss/Vss
Using Equation 13 and Equation 10 yields

Yss = Css/ (1= 5450.5)
Combining the last two equations gives
Agslss[Vss = Css/ (1 — 848g,s5)

Using Equation 2 we get

9
wlsgcss = Wss

hence we can collect terms to obtain

1

l ( WisVss ) T+
o (1 — 5939,88>Ass

Using Equation 7 and Equation 14 we get

Fss - (1 - mcssvss)Asslss/'Uss

D.6. Linear approximations

In order to analyze local dynamics, the traditional approach is to approximate the dynamic

equilibrium system around steady-state values. We define we &; = (x; — x5) /255, Where

18



T4, is the steady-state value for the variable ;. Thus, we can write z; = (1 + &) xgs."

e Euler equation, the first-order conditions of the household, and budget constraint:

Equation 1
d(er/css = 1) = =(p =i + ™ + py(di/dss — 1))dt
Equation 2
ct/Css +(le/lss — 1) = wi/wss
Equation 3
di/dss — ct/css = M/ Ass — 1
(L4 di/dss — A/ Ass)css = ¢

e Profit maximization is given by:

Equation 4
[T} = @y — @1y
Equation 5
d(z14/m16s — 1) = ((p+ 04+ (1 —e)(1 — X)7ss) (T1.4/ 21,56 — 1)
—(e = D(m — xmi — (1 = x)7as)) di
~Yss(dss/Css) (Ye/Yss — 1) + (di/dss — 1) — (cr/Cos — 1)) [ 55 dt
Equation 6
d(@24/72.65 = 1) = ((p+ 0 — e(1 = X)Tss) (224/ 2,65 — 1)
—e(m = xm; = (1= X)7s5)) i

_mcssyss(dss/css) ((mct/mcss - ]-) + (yt/yss - ]-) + (dt/dss - 1) - (Ct/css -

Equation 7

Ft/Fss:yt/yss_

mCSSvSS
ss 1 ss 1
T—— (mey/me + v /v )
Equation 8

wt/wss —1= At/Ass + mct/mcss

1)) Jxg s dt

"In what follows we (log-)linearize around non-stochastic steady-state values, in particular, we assume
certainty equivalence (as an approximation), which amounts to setting 03 = 0% = 0% = 07 = 0.
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e Government policy:

Equation 9

d(iy —47) = (00 (me — m}) + 00, (ye/yss — 1) — 0(ix — 7)) dt
Equation 10

gt/gss - Sg,t/sg,ss -1+ yt/yss

e Inflation and price dispersion:

Equation 11

Ty — XT{': - (1 - X)ﬂ-ss - (5 + (1 - 5)(1 - X)ﬂ-ss)(xlt/xlss - xl,t/xl,ss)
Equation 12

B e(1 — x)mss
V=50 —90 - om

+H(e(1 — x)mss — ) (e /vgs — 1)dt

d(vg/vss — (my — xmy — (1 — x)mss)dt

e Market clearing on goods and labor markets:

Equation 13

Yt/Yss = Ct/Css + SgSg,ss/ (1 — SgSg,65)(Sg,/Sg,s5 — 1)
Equation 14

yt/yss = At/Ass + lt/lss - Ut/vss

e Stochastic processes follow:

Equation 15
d(de/dss = 1) = —pg(dy/dss — 1)dt
Equation 16
d(A/Ags — 1) = —p (A JAgs — 1)dt
Equation 17
d(sg.4/8g.8s = 1) = —py(8g./5g.ss — 1)dl

20



Hence, we may summarize the local equilibrium dynamics around steady-state values as:

di,

déy

in which we define percentage deviations

O(Pra2(T2s — T14) + By (8t + SgSgss/ (1 — 8¢5g,55)8g.4) — (ix — 17)) dt

(1 — X)mss(Zar — T1)dt + (e(1 — x)7ss

—pddAtdt

—pAAtdt
_pgég,tdt

— §)dt

((p+ 5a2)i‘1,t —(e— 1)a2i‘27t - ySS(dSS/CSS)(SQSQ,SS/(l - 5939788)39715 + dt)/xl,SS)dt

(aﬁ:zt - 5a2(§72,t - £17t>> de

—a1 (1 +0)(5g5g.05/(1 = 545g.55)3g.4 + & — Ap) + D0y + dy)dt

(it — 'l;k — ag(i‘g’t — :i‘l,t) — pddt)dt

(xy — xss) /x5 and used the definitions for

a1 =p+0—¢e(l—x)mss, and ag =0 + (1 —€)(1 — x)7ss in the main text.

In order to analyze local dynamics around the non-stochastic steady state, we need to

study the eigenvalues of the Jacobian matrix evaluated at the steady state:

1 —

,LSS

a

o O O o o O

agy

0

a22

Q72

0
0

a33

g3
73

ag3

0
0
0

Ag4

Q74

21

a5
0
0
0

Q55

Qg5

Q75

16

(26

Qg6
Q76

age

air  aig
Qo7 0
0
0
0
Qg7 0
arr  ars
asy 0

dt



where a1 = —0
a5 = (9%5959753/(1 — SgSg.s5)
ag = —0¢, as
ay; = 6¢a
aig = 09,

ap = (1 —x)mss—9

ax = —e(1—x)7ss

ayr = (1 — x)7ss

asz = —pPq

(44 = —Pa

ass = —p,

ags = —Yss(dss/Css) /155

a6s = —Yss(dss/Css)SgSg,ss/ (1 — SgSg.s5)/T1 55
ags = p+Eaq

agr = —(e—1)ag

arp = —a ¥

azz3 = —a

ary, = a(1+9)

ars = —ai1(147)sy5g5s/(1 — 545,55)
a7 = €as

Q77 = @1 — EQg

ars = —ar(1+9)

ag; = 1

agy = —Pq

age = G2

g7 = —a2
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D.7. Stochastic steady state

The deterministic values, however, do not necessarily correspond to the stationary points
in the absence of shocks, i.e., the values at which the variables are expected to stay idle
in the presence of risk. Hence, the stochastic steady state values are obtained from the
conditional deterministic equations, setting the random shocks (not their variances) to

zero. We may thus start with (8) and compute E(dd;) = 0, or
0 = —(pglogd, — 2o3) didt = dys =exp(305/py)

The stochastic steady state values do not necessarily reflect moments of the variables. For

example, the preference shock implies:
t
dlogd; = —pylogddt + 04dBy, < logd, = e P logdy + o4 / e’V AB;,
0

which has a long-run (or stationary) Normal distribution logd; ~ N(0,303/p,).® Hence,
if log d; is asymptotically normally distributed, d; ~ LN(0, 302/p,) with

E(dy) = exp(103/pa).

It shows that both the unconditional mean value of the stationary distribution and the
stochastic steady state increase in o2

Similarly, we obtain the stochastic steady states for the remaining shocks

0 = —(palogA; —10%) Adt = Ay =exp(304/pa)
0 = — (,og log sy — %03) Sgdt = Sy = exp(%cr;/pg)

Steady-state. In the presence of uncertainty, in case the dynamic variables approach a
stochastic steady-state distribution (a stationary distribution). Analogous to the perfect
foresight model, we define the conditional deterministic steady state values as the variables

where the (conditional) deterministic system (41) stays idle. For given inflation targets

8The moments of the stationary distribution can be obtained from

d(logd;)* = 2logd,dlogd; + o2 dt
= —pg2logd;logd;dt + 042logd,dBg + 03 de

the expected value reads
dE(logd;) = —pydE(logd;)dt < E(logd,) = e Pa'logdy = tlim E(logd;) =0
— 00

such that
E((logd;)?) = Var((log d)*) = 505/pa
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77, the Euler equation (41) determines the long-run values ;.

e Euler equation, and the first-order conditions of the household:

Equation 1

- * .
Uy — Ty = lgg — Tgs

1

_ ~2 2 | ~2 2 2 2 | 2 2 1~ 2 1x 2 1~ 2
=p— (cdad+cAcrA+cgcrg +cio; — 5Cdd0 g — 5CAAT 4 — 5Cgq0

2 1~
Ciio-i

g 2
Equation 2
wlfscss = Wss

Equation 3

—1
dsscss = )\ss
e Profit maximization is given by:
Equation 4
* € :L‘Q,ss
* e—1 T1,ss

Equation 5
0=(p+0—(e=1)(1 = x)Tas)T1,65 = Ass¥ss
Equation 6
0=(p+0—e(l = X)Tss) Tass — AssYssMCss
Equation 7
Fss = (1= mcssvss)Yss
Equation 8

Wss = Assmcss

e Government policy:

Equation 9
(This equation is an identity in the steady state.)
Equation 10

Gss = S¢Sg,s5Yss
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e Inflation evolution and price dispersion:

Equation 11

Equation 12
0=19 (H:s)ie + (e(1 = X)7ss) — 6) Vs

e Market clearing on goods and labor markets (one condition is redundant):

Equation 13
Yss = Css + gss  (expenditure)
Equation 14

~—*l,s (production)

Yss =
(redundant)

Yss = wssl35 + Fsg (income)

e Stochastic processes:

Equation 15

dss - eXp(%a?l/pd>
Equation 16

Ass = eXp(%O—?A/pA)
Equation 17

Sg,55 = eXp(%o-fy/pg)
Using Equation 11, we obtain the steady-state value for the price ratio:
_1
I = (14 (1 —e)(1 = x)7es)/0) 7=

From Equation 12, we obtain the steady-state value for price dispersion as:

o (IT;,) "
0 —e(l = x)mss

Vss =

Using Equations 5 and 6 we can solve for the steady-state value of the marginal cost:

p+0—e(l—x)mss
p+o—(e=1)1 — x)7mss

McCgg = (xQ,ss/xl,ss>
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which by inserting Equation 4 gives:

p+o—e(l—x)mss e—1_,
HSS
pro—(e=DA-x)7ms ¢

MCgs =

Hence, we obtain

1,8 = dss /(1 = 8¢8g,5)(p + 0 = (¢ = D)(1 = X)7ss))

and
T2 55 = (1 - 1/€)x1788H:s

Using Equation 8, we obtain

Wss = AgsMCss
Using Equation 14, we obtain

Yss = Asslss/Vss
Using Equation 13 and Equation 10 yields

Yss = Css/ (1= 5450.5)
Combining the last two equations gives
Agslss[Vss = Css/ (1 — 848g,s5)

Using Equation 2 we get

9
wlsgcss = Wss

hence we can collect terms to obtain

1

l ( WisVss ) T+
o (1 — 5939,88>Ass

Using Equation 7 and Equation 14 we get

Fss - (1 - mcssvss)Asslss/'Uss
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D.8. Alternative Taylor principles and stability
We review insights related to positive trend inflation and determinacy in the NK model
(x =0). To study the stability properties of the dynamic system, the nonlinear system

dry = f(x)dt

is approximated by the linear system

1
ixt = —dxy = Az — gs)

dt dt

Equivalently, we may study (absolute) deviations from an equilibrium x; — zs by defining

d d

@(th - SL’ss) = @l’t = A(llft - SL’ss)

such that the Jacobian matrix is identical, or define percentage deviations Ty = x;/xgs — 1

for each variable and use x; = (1 + )z such that for each variable

d . d .
@xt = 1/1’53E1’t = Az — xs5) /55 = Ay

with identical Jacobian matrix of the vector function f(z;).
For illustration, we show the linearized NK model with s, = 0 (cf. Section D.6). We

compare the feedback rule vs. partial adjustment. With partial adjustment, we have:

diy = (06, (i —m;) + 00,9 — 0(ir — i7))dt
S die —iss) = (00 (m —m;) + 00,5, — O(iy — 1))dt
& d(e”(iy—ip))/dt = €"0¢, (m —7]) + 00,0

t
for th— —co = i—if — 0 / 0N (o (mp — 7) + 6,50) d,

— 00

which requires 8 > 0 or alternatively for the feedback rule model:
Zt—Z: :(bW(Wt_Tr:)—i_(by(yt/ySS_ 1)7 ¢7r > 17 (by > 0.

D.8.1. Feedback rule

In the feedback rule in the simple NK model we have:
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or more general, the feedback rule (used in the main text) with an output response:

’lt—Z: :(bW(Wt—Trr)‘i‘(by(yt/yss_ 1)7 ¢7r > 17 (by 207

for example ¢, ~ 1.5 and ¢, ~ 0.5 for target rates m; ~ 0 (see Woodford, 2001).
To study the properties of the equilibrium points, define x; = (y, vy, 21,4, T2¢) such
that

[ —(p— it + ) Yi ]
§(1+(1—e)m/8) 7= + (em, — 0)vy
(p+0—(e—)mp)ars — 1

(p+ 0 — emy) woy — oyl t?

f(ll?t) = f(yuUt,lUl,t,let) =

Evaluating the Jacobian matrix at an equilibrium point s = (Yss, Vss, 1,55, T2,55) yields

ngy 0 (1— gbﬂ)asts/xl,ss —(1— ¢w)a2?/ss/x27ss
A, — 0 EMgs — 0 —ET 45Vss/ 155 ET s5Vss/ T2 55
0 0 p+eas —(e = 1)agx1 55/ 2 55
—(14+D)a1x 55 /yss —Va1T2 55/ Vss €T 55/ T1 55 ay — eaz

where in this version a1 = p + 0 — e, and as = 0 + (1 — &) 7.

Hence, we may approximate the equilibrium dynamics by

dgt = 1w — P — Wt)dt

p+az)Zis+ (1 —e)(m — 7)) dt
all’gt — E(ﬂ't — 7Tss) (1 —+ 19)&13)25 — ﬁalﬁt)dt

diy, =

(1

do, = ((57rss — 0)0y + emgs/as(my — mss))dt
((
(

d.’,i'27t -

where Tt — Tss = a2($2,t/x2,ss - xl,t/xl,ss) and it - ¢y(yt/yss - ]-) + gbﬂ(ﬂ-t - 7Tss) + iss such

that the inflation dynamics are:

dmy = p(mp— mge) dt — (0 4+ (1 — &) mss)Tss (224 /20 55 — 1)dt
_"i((yt/yss - 1) + (Ut/vss - 1>79/(1 + ﬂ))dt

in which Kk = (0 4 (1 — &)7mss) (1 +9) (p+ 6 — emss).

Around zero-inflation target 7, = 0 and 74, = p, the equilibrium dynamics are:

dge = (i —p—m)dt
df)t - —5@tdt
dmy = (pm — (L+9)(p +6)6g: — I(p + 0)d0;)dt

In this first-order approximation, price dispersion is no longer affected by other variables,

28



such that it will always converge. Analyzing equilibrium dynamics will be based on:

dgt = (Zt —pP— Wt)dt
dmy = (pmy — kyy)dt

where k = (1 +9) (p+0)6 and 4y = iy + ¢, 7 + ¢, 3. Sometimes the linearized model
around zero inflation target is used to approximate the model around positive inflation
targets, mss > 0 (e.g., Cochrane, 2017b, eq. (4) with time-varying 7y and p).

Based on the reduced system = = (g, m;) for w45 = 0, the 2 x 2 Jacobian matrix reads:

A =
—K p

gby ¢ﬂ_1]

For a unique locally bounded equilibrium we need two positive eigenvalues, for the larger
system mgs # 0 we need three positive and one negative eigenvalue.

The Jacobian matrix has tr(A4;) = A\ + Ay = ¢, +p > 0 and det(4,) = po, + (¢, — 1)k
is positive for ¢, > 1, thus both eigenvalues have positive real parts, \j\y = det(A;),

A= (¢, + p)A+pd, + (6, — 1) =10

Mo = o+ 6, %1\ /(8,+ ) — 4(po, + (6, — 1)

So the unique locally bounded solution is ¢; = 0 and 7; = 7, such that i; = ig,.

D.8.2. Partial adjustment

For the partial adjustment model, we need to add the dynamics of the interest rate:
d(i¢ — i) = (0 (m — ;) + 00,4 — 0(iy — 1)) dt

It relates to Graeve, Emiris, and Wouters (2009), where the Taylor rule has lagged interest
rates and response to the output gap (percentage deviations).

To study the properties of the two equilibrium points, define z; = (yt, vr, 14, Toy, ir)
such that

—(p—is + 1) Yt
§(1+ (1 —e)my/8) 7= + (emy — O)vy
f(xe) = f(ye, v, 214, T, i) = (p+o6—(e—1)m)ay—1

(p+0 —emy) xoy — Yvly; 7
| 00, (T — Tss) + 00, (Ye/yss — 1) — O(iy — iss) |
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Evaluating the Jacobian matrix at equilibrium point s = (Yss, Uss, 1,555 2,55, bss) yields

0 0 A2Yss/T1 55 —02Yss/ T2, Yss
0 EMss — 0 —EMgsUss/T1 ss ET ssVss/ T2 s
Ay = 0 0 0+ cay —(e = 1)agxy 45/T255 O
—(I+D)arross/Yss —V1T255/Vss  €A2T255/T1 5 a; — €ay
e%/yss 0 —9¢na2/$1,ss 9¢7r(12/9€2,ss —0

where ay = p+ 0 — emg, and ag = 6 + (1 — &) 7gs.

Hence, we may approximate the equilibrium dynamics by

dgt = 14 — — 7Tt) dt
d@t -

(é
(
din, = (
(
(69

(57rss — 0)0y + emgs/as(my — mss)) dt
(p+az2)@+ (1 —e)(m —mss)) dt
a1$2t - 5(7Tt 7Tss) - (1 + ﬁ)algt - 19@1@t)dt

( 7Tss) + QQZSyfgt - Q(Zt - Z.SS)) dt

de,t -

dit —
where 7 — Ty = a2(22+/Tass — T14/T1 s5) such that the inflation dynamics are:
dﬂ-t = (p(ﬂ-t - ﬂ-ss) - a27rssfi'2,t - Kg)t — ﬁalagﬁt)dt

in which k = (1 4+9)(p+ 0 — emss) (6 + (1 — &) 7ss).

Around zero-inflation target 7, = 0 and 74, = p, the equilibrium dynamics are:

dg, = (4 —p—m)dt

do, = —o0u,dt

dmy = (pme — (L +9)0(p + 0)gr — V5(p + )vy)dt
di, = (0¢,m + 00,0 — 0(i; —iss)) dt

In this first-order approximation, price dispersion is no longer affected by other variables,

such that it will always converge. Analyzing equilibrium dynamics will be based on:

dgt = (’lt —pP— 7Tt) dt
dm, = (pm — kyy)dt
diy, = (09,7 + 0¢,0; — 0(iy — p)) dt

where Kk = (14 9) (p+ §) 0. Based on the reduced system x; = (g, 7y, 4;) for mgs = 0, the
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3 x 3 Jacobian matrix reads:

0 -1
AQ = —K P 0
0o, 06, —0

For a unique locally bounded equilibrium we need two positive and one negative eigenvalue,

for the larger system 7., # 0 we need three positive and two negative eigenvalues.

D.9. Local determinacy

In this section we study local determinacy of the minimal NK model. We illustrate how
the results depend on the inflation target 7y > 0, and how the Taylor rule can be extended
to allow for larger regions of determinacy. For comparison with the simple NK modelwe
assume throughout the section s, = 0, x =0, and ||(64, 04, 04, 0;)|| = 0, such that r, = p.

While the simple NK model with a feedback rule has no state variables, the NK model
with no shocks (henceforth minimal NK model) with 77 > 0 introduces price dispersion v;
as a relevant state variable, and a unique locally bounded solution requires three positive

eigenvalues of the Jacobian matrix (cf. Appendix D.8.1)°

®y 0 (1= @, )aoyss/T1ss (O — 1)a2yss/T2, s
A — 0 EMgs — 0 —ET 55Vss [ T1,ss ETssVss /T2,
0 0 p+casg —(e = Dasxy 55/ 255
—(1+ D) a10955/Yss —Va172 55/ Vss €A% 55/ T1 55 a; — €as
where
a1 =p+0—emgs, as =0+ (1 —e)mg, (D.16)

such that the (linearized) inflation dynamics are

dmy = p(mp— mee) dt — (0 4+ (1 — &) msg)Tss (224 /20 56 — 1)dt
(/s — 1)+ (0 0s — )D/(1+ D))l (D.17)

So we define
K= 0+ (1—e)mss)(14+9) (p+ 0 —emss) . (D.18)

9We impose the parametric restriction § > em,, to ensure non-negative price dispersion, which in the
frictionless case 6 — oo the condition is fulfilled. For w45 = 0 the system can be reduced to

A1|:¢y gb7r1:|7
—K p

which shows that the output response would not introduce different conclusions regarding stability in the
simple NK model: A necessary (and sufficient) condition for local determinacy still would be ¢, > 1.

31



For a unique locally bounded equilibrium we need three positive and one negative
eigenvalue. In the NK model with partial adjustment, the two relevant state variables are
the interest rate and the level of price dispersion, so a unique locally bounded solution

requires three positive eigenvalues of the Jacobian matrix (cf. Appendix D.8.2)

[ 0 0 A2Yss/ X1 55 —A2Yss/ T2, 55 Yss |
0 EMgs — 0 —EMgsVss/T1 s ETs5Vss /T2 ss 0
Ay = 0 0 p+cag (1 —€)asxy ss/T25s 0O
—(1+ ) 12255/ Yss —Va1T255/Vss €22 55/ T1 55 ay — €as 0

9%/?/55 0 —9¢7ra2/9€1,ss 9¢7ra2/9€2,ss —0 |

whereas for 7, = 0 it collapses to the 3 x 3 matrix of the simple model. Note that the
(linearized) inflation dynamics are not affected by the specification of the Taylor rule.

For a unique locally bounded equilibrium we need three positive and two negative
eigenvalues. The determinacy regions are shown in the accompanying web appendix.

Apart from the effects of risk, the policy instruments are the same as before. The more
general Taylor rules (21a) and (21b) introduce an output response ¢,, in addition to the
inflation response ¢, as a new policy parameter.

Summarizing, the choice of the Taylor rule in the (continuous-time) NK model can be
decisive for the answer whether higher interest rates raise or (temporarily) lower inflation.
While the feedback rule postulates that higher interest rates necessarily correspond to
higher inflation rates (varying the relevant state variables/shocks), the partial adjustment
model supports both a negative and a positive link as in the simple model. Our results
indicate that the policy experiments imply qualitatively the same responses for interest
rates at near zero values compared to normal times about the long-run equilibrium.

We replicate the findings in Coibion and Gorodnichenko (2011), showing that the
conclusion about determinacy in the NK model is different in models with positive trend
inflation (no indexation). Similarly we find that the output response helps to obtain
determinacy in the feedback model, whereas the partial adjustment model seems to be

more robust to positive inflation target because of the interest smoothing component.

32



D.10. The dynamic system under the risk-neutral probability measure

Consider the system of stochastic processes, i.e., 5 endogenous processes for the auxiliary
variables x4, xa,, price dispersion vy, the Taylor rule i;, and the Euler equation ¢;, and 3

exogenous processes for s, ;, d;, A;, which summarize equilibrium dynamics:

d2 A2 52
de, = —(p—iy+m)edt + o3 cddt+crA cAdt+02 %t 2dt+a cidt
Ct Ct Ct

+o4cqdidBay + JAAtcAdBM + 04841C4d By + 0,¢;dB; 4

—cpglog dydt + %ctoﬁdt — cddtaédt

((p+0 = (e =V)(m — xm;))wrs — di /(1 = s5954,)) dt
drey = ((p+ 0 —e(my — x7})) xar — medy /(1 — s4544)) dt
dis = 0(dn(me — 7f) + &y (ye/yss — 1) — (ir — iy))dt + 0:d B
dop = (0(1— (e — 1)(m — xm})/6) T + (e(m — x7}) — O)vy)dt

deLt =

ddt = (pd log dt Ud) dtdt —+ UddtdBd it
d4; = —(pylogA; — QUA)At dt + 04 A;dBa
dsg: = —(pg log s — %Uz)sg,t dt + 0454:dB,

Suppose that B, = (B, Bat, Bay, Bgvt)T is the k-vector of Brownian motions under the
physical probability measure P, we define BY = (BQ B;l@t, Bgt, B@) as the equivalent

it

k-vector of Brownian motions under the risk-neutral probability measure, such that

B, B, oV Vit
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Hence, we may write the equilibrium dynamics under the risk-neutral measure Q as
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E. Figures

E.1. Data and implied dynamics

Figure E.1: US federal funds rate, output gap, cyclical components
In this figure we show time series plots of the US Effective Federal Funds Rate (Fed Funds), and different
estimates of the Output gap based on potential output from the Congressional Budget Office (CBO), the
Hodrick-Prescott (HP) filter, and the Beveridge-Nelson (BN) trend-cycle decomposition, and the same
filter with dynamic mean adjustment (DMA). All series are obtained from the Federal Reserve Bank of
St. Louis Economic Dataset (FRED). The sample runs from January, 1990, through August, 2020.
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Figure E.2: Implied natural rate
In this figure we show time series plots of the model-implied natural rate using the simple NK model with
temporary shocks to the natural rate, by matching the monthly US Effective Federal Funds Rate (Fed
Funds) and minimizing the distance to the Consumer Price Index (Core CPI), seasonally adjusted, at the
monthly frequency. The sample runs from January, 1990, through August, 2020.
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Figure E.3: Implied natural rate
In this figure we show time series plots of the model-implied natural rate using the simple NK model with
temporary shocks to the natural rate, by matching the quarterly US Effective Federal Funds Rate (Fed
Funds) and minimizing the distance to the Consumer Price Index (Core CPI), seasonally adjusted, and
the Output gap (HP Filter) at the quarterly frequency from 1990Q1 through 2020Q2.
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Figure E.4: Implied inflation rates and 10-year treasury rates
In this figure we show time series plots of the model-implied inflation and the 10-year treasury rates using
the simple NK model with temporary shocks to the natural rate, by matching the observed US Effective
Federal Funds Rate (Fed Funds) and the Consumer Price Index (Core CPI), seasonally adjusted, at the
monthly frequency. The sample runs from January, 1990, through August, 2020.
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Figure E.5: Implied inflation rates, 10-year treasury rates and output gap
In this figure we show time series plots of the model-implied inflation, 10-year treasury rates, and the
output gap using the simple NK model, allowing for temporary shocks to the natural rate, when matching
the observed US Effective Federal Funds Rate (Fed Funds) and the Consumer Price Index (Core CPI),
seasonally adjusted, and the Output gap (HP Filter) at the quarterly frequency (1990Q1-2020Q2). Missing
values indicate that the algorithm is not able to solve the system of equations for the particular dates.
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Figure E.6: Implied natural rate
In this figure we show time series plots of the model-implied natural rate using the simple NK model
with temporary and permanent shocks to the natural rate and inflation, by matching the monthly US
Effective Federal Funds Rate (Fed Funds), the 10-Year Treasury Constant Maturity Rate (10Y Govt), the
10-Year Treasury Inflation Protected Securities Rate (10Y TIPS), and the Consumer Price Index (Core
CPI), seasonally adjusted, at the monthly frequency. Restricted by data availability of 10Y TIPS, the
sample runs from January, 2003, through August, 2020.
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Figure E.7: Implied natural rate
In this figure we show time series plots of the model-implied natural rate using the simple NK model
with temporary and permanent shocks to the natural rate and inflation, by matching the quarterly US
Effective Federal Funds Rate (Fed Funds), and the 10-Year Treasury Constant Maturity Rate (10Y Govt),
the 10-Year Treasury Inflation Protected Securities Rate (10Y TIPS), the Consumer Price Index (Core
CPI), seasonally adjusted, and the Output gap (HP Filter) at the quarterly frequency. Restricted by data
availability of 10Y TIPS, the sample runs from 2003Q1 through 2020Q2.
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Figure E.8: Implied natural rate
In this figure we show time series plots of the model-implied natural rate using the simple NK model
with temporary and permanent shocks to the natural rate, by matching the monthly US Effective Federal
Funds Rate (Fed Funds), and minimizing the distance to the 10-Year Treasury Constant Maturity Rate
(10Y Govt), and the Consumer Price Index (Core CPI), seasonally adjusted, at the monthly frequency.
The sample runs from January, 1990, through August, 2020.
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Figure E.9: Implied natural rate
In this figure we show time series plots of the model-implied natural rate using the simple NK model with
temporary and permanent shocks to the natural rate, by matching the observed US Effective Federal
Funds Rate (Fed Funds), and minimizing the distance to the 10-Year Treasury Constant Maturity Rate
(10Y Govt), the Consumer Price Index (Core CPI), seasonally adjusted, and the Output gap (HP Filter)
at the quarterly frequency from 1990Q1 through 2020Q2.
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Figure E.10: Implied inflation rates and 10-year treasury rates
In this figure we show time series plots of the model-implied inflation and the 10-year treasury rates
using the simple NK model with temporary and permanent shocks to the natural rate, by matching the
observed US Effective Federal Funds Rate (Fed Funds), the 10-Year Treasury Constant Maturity Rate
(10Y Govt), and the Consumer Price Index (Core CPI), seasonally adjusted, at the monthly frequency.
The sample runs from January, 1990, through August, 2020.
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Figure E.11: Implied inflation rates, 10-year treasury rates and output gap
In this figure we show time series plots of the model-implied inflation, 10-year treasury rates, and the
output gap using the simple NK model with temporary and permanent shocks to the natural rate, by
matching the observed US Effective Federal Funds Rate (Fed Funds), the 10-Year Treasury Constant
Maturity Rate (10Y Govt), and the Consumer Price Index (Core CPI), seasonally adjusted, and the
Output gap (HP Filter) at the quarterly frequency (1990Q1-2020Q2). Missing values indicate that the
algorithm is not able to solve the system of equations for the particular dates.
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Figure E.12: Implied inflation rates and 10-year treasury rates
In this figure we show time series plots of the model-implied inflation and the 10-year treasury rates
using the simple NK model with temporary and permanent shocks to the natural rate, by matching
the observed US Effective Federal Funds Rate (Fed Funds), and minimizing the distance to the 10-Year
Treasury Constant Maturity Rate (10Y Govt), and the Consumer Price Index (Core CPI), seasonally
adjusted, at the monthly frequency. The sample runs from January, 1990, through August, 2020.
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Figure E.13: Implied inflation rates, 10-year treasury rates and output gap
In this figure we show time series plots of the model-implied inflation, 10-year treasury rates, and the
output gap using the simple NK model with temporary and permanent shocks to the natural rate, when
matching the observed US Effective Federal Funds Rate (Fed Funds), and minimizing the distance to
the 10-Year Treasury Constant Maturity Rate (10Y Govt), and the Consumer Price Index (Core CPI),
seasonally adjusted, and the Output gap (HP Filter) at the quarterly frequency (1990Q1-2020Q2).
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E.2. Policy functions

Figure E.14: Solution of the nonlinear NK model with partial adjustment
In this figure we show (from left to right) the output gap, and the inflation rate as a function of the (initial)
interest rate in the nonlinear model (blue solid), in the linearized model (dashed) with full indexation at
trend inflation, for a parameterization (p, x, ¢, &, 0, 7ss, x) = (0.03,0.8842,4,0,0.5,0.02, 1).
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Figure E.15: Solution of the stochastic NK model
In this figure we show (from left to right, top to bottom) the optimal consumption, Euler equation errors,
optimal hours, value function, output gap, auxiliary variable z1, marginal cost, and auxiliary variable zo
as a function of the interest rate. A blue solid line shows the solution of the stochastic model with partial
adjustment, the black dotted line indicates the solution of the deterministic model.
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Figure E.16: Solution of the stochastic NK model
In this figure we show (from left to right, top to bottom) the real interest rate, natural rate, inflation,

slope of the yield curve, interest rate, 1-year yields, 5-year yields, and 10-year yields as a function of the

interest rate. A blue solid line shows the solution of the stochastic model with partial adjustment, the
black dotted line indicates the solution of the deterministic model.
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Figure E.17: Solution of the stochastic NK model
In this figure we show (from left to right, top to bottom) the optimal consumption, Euler equation errors,
optimal hours, value function, output gap, auxiliary variable z1, marginal cost, and auxiliary variable zo
as a function of the preference shock. A blue solid line shows the solution of the stochastic model with
partial adjustment, a red solid line shows the solution of the stochastic model with a feedback rule, the
black dotted lines indicate the solutions of the deterministic models.
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Figure E.18: Solution of the stochastic NK model
In this figure we show (from left to right, top to bottom) the real interest rate, natural rate, inflation,
slope of the yield curve, interest rate, 1-year yields, 5-year yields, and 10-year yields as a function of the
interest rate. A blue solid line shows the solution of the stochastic model with partial adjustment, a red

solid line shows the solution of the stochastic model with a feedback rule, the black dotted lines indicate
the solutions of the deterministic models.
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Figure E.19: Solution of the stochastic NK model
In this figure we show (from left to right, top to bottom) the optimal consumption, Euler equation errors,
optimal hours, value function, output gap, auxiliary variable z1, marginal cost, and auxiliary variable zo
as a function of the technology shock. A blue solid line shows the solution of the stochastic model with
partial adjustment, a red solid line shows the solution of the stochastic model with a feedback rule, the
black dotted lines indicate the solutions of the deterministic models.
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Figure E.20: Solution of the stochastic NK model
In this figure we show (from left to right, top to bottom) the real interest rate, natural rate, inflation,
slope of the yield curve, interest rate, 1-year yields, 5-year yields, and 10-year yields as a function of the
interest rate. A blue solid line shows the solution of the stochastic model with partial adjustment, a red

solid line shows the solution of the stochastic model with a feedback rule, the black dotted lines indicate
the solutions of the deterministic models.
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E.3. Impulse responses

Figure E.21: Responses to monetary policy shocks (temporary and permanent)
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected monetary
policy shocks to both the (initial) interest rate (—0.025) and the inflation target rate (—0.0075), with
effects for the output gap, the inflation rate, and the level/slope of the interest rate in the nonlinear model
(blue solid), in the linearized version (x = 0, dashed), and in the three-equation NK model (dotted).
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Figure E.22: Responses to monetary policy shocks at near zero interest rates
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected monetary
policy shocks to both the (initial) interest rate (—0.025) and the inflation target rate (—0.0075), with
effects for the output gap, the inflation rate, and the level/slope of the interest rate in the nonlinear model
(blue solid), in the linearized version (x = 0, dashed), and in the three-equation NK model(dotted).
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Figure E.23: Responses to monetary policy shocks (temporary and permanent)
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected monetary
policy shocks (0.01) either permanent (or target shock, left) or temporary (or initial interest rate, right),
with effects for the interest rate (red dashed) and inflation (blue solid), and output in the nonlinear model

(cf. Uribe, 2017, Figure 3). Effects for the three-equation NK model are similar (not shown)
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Figure E.24: Responses to monetary policy shocks (temporary and permanent)

In this figure we show (from left to right, top to bottom) the simulated responses to unexpected monetary
policy shocks (0.01) either permanent (or target shock, left) or temporary (or initial interest rate, right),
with effects for the real interest rate in the nonlinear model (cf. Uribe, 2017, Figure 4).
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E.4. Simulated shocks

Figure E.25: Responses to monetary policy shocks (temporary and permanent)
In this figure we show (from left to right, top to bottom) the simulated responses for unexpected shocks to
the (initial) interest rate (—0.025), and the inflation target rate (—0.005), with effects for the output gap,
the inflation rate, and the level/slope of the interest rate (blue solid), and the no-target shock scenario

in the three-equation NK model (black dashed, 7; = 0.02, x = 0).
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Figure E.26: Simulated responses to hypothetical shocks (2001-2003)
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected shocks to
the interest rate (—0.05) and the inflation target (—0.015), with effects for the output gap, the inflation
rate, the level of the interest rate, and the 10-year yields (blue solid), the no-target shock scenario (black
dashed, 7y = 0.02), and the pre-shock scenario (dotted); predicted initial values (circle) and data (cross).
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Figure E.27: Implied yield curves for the hypothetical shocks (2001-2003)
In this figure we show the yield curve response to unexpected shocks to the (initial) interest rate (—0.05)
and the inflation target rate (—0.015), with effects for the nominal and real yields (blue solid), the no-
target shock scenario (black dashed, 7 = 0.02), and the pre-shock scenario (dotted); observed yields are
indicated with a cross (TIPS are available from January 2003).
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Figure E.28: Simulated responses to hypothetical shocks (2003-2007)

In this figure we show (from left to right, top to bottom) the simulated responses to unexpected shocks
to the (initial) interest rate (0.04), the inflation target (0.015) and preferences (—0.025) and its effect on
the output gap, the inflation rate, the level of the interest rate, and the 10-year yields (blue solid), the
no-target shock scenario (black dashed, 7} = 0.005), and the pre-shock scenario (dotted).
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Figure E.29: Implied yield curve for the hypothetical shocks (2003-2007)
In this figure we show the yield curve response to unexpected shocks to the (initial) interest rate (0.04),
the inflation target rate (0.015), and preferences (—0.025), with effects for the nominal and real yields
(blue solid), the no-target shock scenario (black dashed, 7} = 0.005), and the pre-shock scenario (dotted);
observed yields are indicated with a cross.
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Figure E.30: Simulated responses to identified shocks (2003-2007)
In this figure we show (from left to right, top to bottom) the simulated responses to the identified shocks
(cf. Figure 8), with effects for the output gap, the inflation rate, the interest rate, and the 10-year yields
(blue solid), and the pre-shock scenario (dotted); predicted initial values (circle) and data (cross).
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Figure E.31: Implied yield curves for the identified shocks (2003-2007)
In this figure we show (from left to right, top to bottom) the implied yield curve for the identified shocks

(cf. Figure 8), with effects for the nominal and real yields (blue solid), and the pre-shock scenario (dotted);
observed yields are indicated with a cross.
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Figure E.32: Simulated responses to hypothetical shocks (2007-2010)
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected shocks
to the (initial) interest rate (—0.0475), the inflation target rate (—0.02), and preferences (—0.1), and its
effect on the output gap, the inflation rate, and the level of the interest rate, and the 10-year yields
(blue solid), the no-target shock scenario (black dashed, 7} = 0.02), and the pre-shock scenario (dotted);
predicted initial values (circle) and data (cross).
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Figure E.33: Implied yield curve for the hypothetical shocks (2007-2010)
In this figure we show the yield curve response to unexpected shocks to the (initial) interest rate (—0.0475),
the inflation target rate (—0.02), and preferences (—0.1), with effects for the nominal and real yields (blue
solid), the no-target shock scenario (black dashed, 7} = 0.02), and the pre-shock scenario (dotted);
observed yields are indicated with a cross.
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percentage deviations

observed yields are indicated with a cross.
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Figure E.34: Simulated responses to identified shocks (2007-2010)

In this figure we show (from left to right, top to bottom) the simulated responses to the identified shocks
(cf. Figure 8), with effects for the output gap, the inflation rate, the interest rate, and the 10-year yields
(blue solid), and the pre-shock scenario (dotted); predicted initial values (circle) and data (cross).
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Figure E.35: Implied yield curves for the identified shocks (2007-2010)
In this figure we show (from left to right, top to bottom) the implied yield curve for the identified shocks
(cf. Figure 8), with effects for the nominal and real yields (blue solid), and the pre-shock scenario (dotted);
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Figure E.36: Simulated responses to hypothetical shocks (2010-2011)
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected shocks
to the inflation target rate (0.02), the Wicksellian rate (—0.015), and preferences (—0.15), and its effect
on the output gap, the inflation rate, the level of the interest rate, and the 10-year yields (blue solid),
the no-natural rate shock scenario (black dashed, r; = 0.03, 7 = 0.02), and the no-target shock scenario
(dotted, r; = 0.03, m; = 0); predicted initial values (circle) and data (cross).
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Figure E.37: Implied yield curve for the hypothetical shocks (2010-2011)
In this figure we show the yield curve response to unexpected shocks to the inflation target rate (0.02),
the Wicksellian rate (—0.015), and preferences (—0.15), with effects for the nominal and real yields (blue
solid), no-natural rate shock scenario (black dashed, r; = 0.03, 7; = 0.02), and the no-target shock
scenario (dotted, r; = 0.03, m; = 0); observed yields are indicated with a cross.
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Figure E.38: Simulated responses to identified shocks (2010-2011)

In this figure we show (from left to right, top to bottom) the simulated responses to the identified shocks
(cf. Figure 8), with effects for the output gap, the inflation rate, the interest rate, and the 10-year yields
(blue solid), and the pre-shock scenario (dotted); predicted initial values (circle) and data (cross).
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Figure E.39: Implied yield curves for the identified shocks (2010-2011)

In this figure we show (from left to right, top to bottom) the implied yield curve for the identified shocks
(cf. Figure 8), with effects for the nominal and real yields (blue solid), and the pre-shock scenario (dotted);
observed yields are indicated with a cross.
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Figure E.40: Simulated responses to hypothetical shocks (2007-2011)
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected shocks
to the (initial) interest rate (—0.0475), the Wicksellian rate (—0.015), the logistic process (d = 0.79) for
preferences (—0.15), and its effect on the output gap, the inflation rate, and the level/slope of the interest
rate (blue solid), the no-natural rate shock scenario (black dashed, r; = 0.03), and the pre-shock scenario

(dotted, preferences —0.025); predicted initial values (circle) and data (cross).
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Figure E.41: Implied yield curve for the hypothetical shocks (2007-2011)
In this figure we show the yield curve response to unexpected shocks to the (initial) interest rate (—0.0475),
the Wicksellian rate (—0.015), and logistic process (d = 0.79) for preferences (—0.15), with effects for the
nominal and real yields (blue solid), the no-natural rate shock scenario (black dashed, r; = 0.03), and

the pre-shock scenario (dotted, preferences —0.025); observed yields are indicated with a cross.
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Figure E.42: Simulated responses to hypothetical shocks (2004-2005)
In this figure we show (from left to right, top to bottom) the simulated responses to unexpected shocks
to the (initial) interest rate (0.015), and preferences (—0.1), and its effect on the output gap, the inflation
rate, the level of the interest rate, and the 10-year yields (blue solid), and the pre-shock scenario (dotted);
predicted initial values (circle) and data (cross).
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Figure E.43: Implied yield curve for the hypothetical shocks (2004-2005)
In this figure we show the yield curve response to unexpected shocks to the (initial) interest rate (0.02),
and preferences (—0.15), with effects for the nominal and real yields (blue solid), and the pre-shock
scenario (dotted); observed yields are indicated with a cross.
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E.5. Alternative shock dynamics

Figure E.44: Generalized logistic preference shock

In this figure we plot the dynamics of the logistic process, dd; = py(d; —d) (1 —d;) /(1 — d)dt, and the
Ornstein-Uhlenbeck (OU) process, dlogd; = —p, log d;dt, for different parameterizations of p,; and d. It

shows that the dynamics are similar if the lower bound d is sufficiently far away from dy > d. For d = 0
we obtain the (standard) logistic growth model dd; = pyd; (1 — d;) dt (cf. Section A.2).
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