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1. Introduction

New Keynesian (NK) models of the business cycle have become a fundamental tool in the

study of aggregate fluctuations and in the design of monetary and fiscal policies. They fill

the pages of journals and they are extensively used by central banks all around the world

to assess the effects of different monetary interventions.

Nearly all of this extensive literature has worked with a formulation of the model in

discrete time. This was in part because of the familiarity of macroeconomists with discrete

time forms of previous models of the business cycle, as the real business cycle model, and

in part because of the natural mapping of discrete time models with data, which come by

construction in discrete observations.

There are, however, reasons to develop an alternative formulation of the model in con-

tinuous time. Dynamic equilibrium models written in continuous time can take advantage

of a powerful set of mathematical tools developed in the fields of stochastic processes, op-

timal control, and PDEs. Thanks to these tools, many issues, such as adjustment costs,

kinks, or other significant non-linearities can be easily handled and, often, we can even

find closed-form solutions. This is particularly important because many interesting em-

pirical questions or the zero lower bound (ZLB) of nominal interest rates lead directly to

these type of situations. Furthermore, we can rely on a variety of well-tested numerical

methods to solve the model and the associated continuous-time Hamilton-Jacobi-Bellman

(HJB) equation. One key aspect of the HJB equation is that, thanks to the properties of

stochastic calculus, it is deterministic even when we have underlying uncertainty. Thus,

since we do not need to compute expectations (a burdensome step in discrete time Bellman

equations), the solution of the model is faster and much simpler.

Motivated by these arguments, we show how to formulate and solve nonlinearly an

otherwise standard NK model in continuous time. The basic structure of the economy

is as follows. A representative household consumes, saves, and supplies labor. The fi-

nal output is assembled by a final good producer, which uses as inputs a continuum of

intermediate goods manufactured by monopolistic competitors. The intermediate good

producers rent labor to manufacture their good. Also, these intermediate good producers

face the constraint that they can only change prices following a Calvo’s pricing rule. Fi-

nally, there is a government that fixes the one-period nominal interest rate through open

market operations with public debt. In addition, the government taxes and consumes. We

will have four shocks: one to preferences (which can be loosely interpreted as a shock to

aggregate demand), one to technology (interpreted as a shock to aggregate supply), one to

monetary policy, and one to fiscal policy. Then, we will show how the equilibrium system

can be written in terms of 8 state variables. Our nonlinear and global numerical solution

technique allows us to compute equilibrium dynamics and impulse response functions in

the time space, the collocation method is based on Chebychev polynomials to compute
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the HJB equation and thus the solution in the policy function space.

We do not advocate the use of continuous time over discrete time in all cases and

applications. Both approaches are sensible and the choice of one versus the other should

depend on the application and the insights we get from it and not from any a priori

positioning. This paper merely aims at expanding the set of tools available to researchers

by showing how, in a real life example, we can handle rich models in macroeconomics

using continuous time.

The rest of the paper is organized as follows. First, we present a simple NK model in

continuous time and derive the HJB equation of the household. In Section 3, we define

the equilibrium of the economy. Section 4 summarizes some analytical results. Section 5

analyzes the equilibrium dynamics and holds our main results on the effects of the zero

lower bound on macro dynamics. Section 6 describes our numerical solution method in

the policy function space, Section 7 holds some numerical results. We complete the paper

with a description of the estimation process and with some final remarks. An appendix

offers further details on some technical aspects of the paper.

2. Our Model

We describe now the environment that we use for our investigation. It is a rather straight-

forward NK model except for the continuous structure of time.

2.1. Households

There is a representative household in the economy that maximizes the following lifetime

utility function, which is separable in consumption, ct and hours worked, lt:

E0

∫ ∞

0

e−ρtdt

{

log ct − ψ
l1+ϑ
t

1 + ϑ

}

dt (1)

where ρ is the subjective rate of time preference, ϑ is the inverse of Frisch labor supply

elasticity, and dt is a preference shock whose log follows an Ornstein-Uhlenbeck process:

d log dt = −ρd log dtdt+ σddBd,t (2)

where Bd,t is a standard Brownian motion (also Wiener’s process), or, by Itô’s lemma:

ddt = −
(

ρd log dt −
1
2
σ2
d

)

dtdt+ σddtdBd,t.

Below, for this shock and the other two, we will use both the formulation in level and in

logs depending on the context and easiness of notation.

The household can trade on Arrow securities (which we exclude to save on notation)
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and on a nominal government bonds bt at a nominal interest rate of rt (fixed coupon

payments). Let nt denote the number of shares and pbt the equilibrium price of bonds.

Suppose the household earns a disposable income of rtbt + ptwtlt + ptTt + pt̥t, where

pt is the price level (price of the consumption good), wt is the real wage, Tt is a lump-

sum transfer, and ̥t are the profits of the firms in the economy; the household’s budget

constraint is:

dnt =
rtbt − ptct + ptwtlt + ptTt + pt̥t

pbt
dt. (3)

Let bond prices follow:

dpbt = αtp
b
tdt (4)

in which αt denotes the endogenous rate of change, which is determined in general equi-

librium (in equilibrium prices are function of the state variables, for example, by fixing

αt the bond supply has to accommodate so as to permit the bond’s nominal interest rate

being admissible). The household’s financial wealth, bt = ntp
b
t , is then given by:

dbt = (rtbt − ptct + ptwtlt + ptTt + pt̥t)dt+ αtbtdt, (5)

Let prices pt follow the process:

dpt = πtptdt (6)

such that the (realized) rate of inflation is locally non-stochastic. We can interpret dpt/pt

as the realized inflation over the period [t, t+ dt] and πt as the inflation rate.1

Letting at ≡ bt/pt denote real financial wealth and using Itô’s formula, the household’s

real wealth evolves according to:

dat =
dbt
pt

−
bt
p2t
dpt =

rtbt − ptct + ptwtlt + ptTt + pt̥t + αtbt
pt

dt−
bt
p2t
πtptdt

or:

dat = ((rt + αt − πt)at − ct + wtlt + Tt +̥t) dt (7)

2.2. The Final Good Producer

There is one final good is produced using intermediate goods with the following production

function:

yt =

(∫ 1

0

y
ε−1

ε

it di

)

ε

ε−1

(8)

where ε is the elasticity of substitution.

1As it turns out below, we can just set αt = 0 if we require that at = 0 for all t. Our analysis, however,
is not necessarily restricted to the case of no government liabilities. In case of government debt, αt = πt

is required to keep government liabilities constant in real terms for the specified fiscal rule below.
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Final good producers are perfectly competitive and maximize profits subject to the

production function (8), taking as given all intermediate goods prices pit and the final

good price pt. As a consequence the input demand functions associated with this problem

are:

yit =

(

pit
pt

)−ε

yt ∀i,

and

pt =

(∫ 1

0

p1−ε
it di

)

1

1−ε

. (9)

2.3. Intermediate Good Producers

Each intermediate firm produces differentiated goods out of labor using:

yit = Atlit

where lit is the amount of the labor input rented by the firm and where At follows:

d logAt = −ρa logAtdt+ σadBa,t. (10)

Therefore, the real marginal cost of the intermediate good producer is the same across

firms:

mct = wt/At.

The monopolistic firms engage in infrequent price setting á la Calvo. We assume that

intermediate good producers reoptimize their prices pit only at the time when a price-

change signal is received. The probability (density) of receiving such a signal h periods

from today is assumed to be independent of the last time the firm got the signal, and to

be given by:

δe−δh, δ > 0.

A number of firms δ will receive the price-change signal per unit of time. All other firms

keep their old prices. Therefore, prices are set to maximize the expected discounted profits:

max
pit

Et

∫ ∞

t

λτ
λt
e−δ(τ−t)

(

pit
pτ
yiτ −mcτyiτ

)

dτ

s.t. yiτ =

(

pit
pτ

)−ε

yτ ,

where λτ is the time t value of a unit of consumption in period τ to the household that

value future prices from the perspective of the household (hence, the pricing kernel for

the firm). Observe that e−δ(τ−t) denotes the probability of not having received a signal
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during τ − t,

1−

∫ τ

t

δe−δ(h−t)dh = 1−
(

−e−δ(τ−t) + 1
)

= e−δ(τ−t). (11)

After dropping constants, the first-order condition reads:

Et

∫ ∞

t

λτe
−δ(τ−t)(1− ε)

(

pt
pτ

)1−ε

pityτdτ + Et

∫ ∞

t

λτe
−δ(τ−t)mcτε

(

pt
pτ

)−ε

ptyτdτ = 0.

We may write the first-order condition as:

pitx1,t =
ε

ε− 1
ptx2,t ⇒ Π∗

t =
ε

ε− 1

x2,t
x1,t

(12)

in which Π∗
t ≡ pit/pt is the ratio between the optimal new price (common across all firms

that can reset their prices) and the price of the final good and where we have defined the

auxiliary variables:

x1,t ≡ Et

∫ ∞

t

λτe
−δ(τ−t)

(

pt
pτ

)1−ε

yτdτ ,

x2,t ≡ Et

∫ ∞

t

λτe
−δ(τ−t)mcτ

(

pt
pτ

)−ε

yτdτ ,

Differentiating x1,t with respect to time gives:

1

dt
dx1,t = eδtp1−ε

t

1

dt
dEt

∫ ∞

t

λτe
−δτ

(

1

pτ

)1−ε

yτdτ + Et

∫ ∞

t

λτe
−δτ

(

1

pτ

)1−ε

yτdτ
1

dt
d
(

eδtp1−ε
t

)

= −λtyt +

(

δeδtp1−ε
t + eδt(1− ε)p1−ε

t

1

dt

dpt
pt

)

Et

∫ ∞

t

λτe
−δτ

(

1

pτ

)1−ε

yτdτ

= −λtyt + (δ + (1− ε)πt)Et

∫ ∞

t

λτe
−δ(τ−t)

(

pt
pτ

)1−ε

yτdτ

= −λtyt + (δ + (1− ε)πt) x1,t

or

dx1,t = ((δ + (1− ε)πt) x1,t − λtyt) dt (13)

were we identify the actual rate of inflation πt over the period [t, t+ dt] with dpt/pt. We

can also renormalize λt = eρtmt and get:

dx1,t =
(

(δ + (1− ε)πt) x1,t − eρtmtyt
)

dt

A similar procedure delivers:

dx2,t =
(

(δ − επt) x2,t − eρtmtmctyt
)

dt (14)
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Assuming that the price-change is stochastically independent across firms gives:

p1−ε
t =

∫ t

−∞

δe−δ(t−τ)p1−ε
iτ dτ ,

making the price level pt a predetermined variable at time t, its level being given by past

price quotations (Calvo’s insight). Differentiating with respect to time gives:

dp1−ε
t =

(

δp1−ε
it − δ

∫ t

−∞

δe−δ(t−τ)p1−ε
iτ dτ

)

dt

= δ
(

p1−ε
it − p1−ε

t

)

dt

and
1

dt
dp1−ε

t = (1− ε) p−ε
t

dpt
dt
.

Then

dpt =
δ

1− ε

(

p1−ε
it pεt − pt

)

dt ⇒ πt =
δ

1− ε

(

(Π∗
t )

1−ε − 1
)

. (15)

Differentiating the previous expression, we obtain the inflation dynamics:

1

dt
dπt = δ (Π∗

t )
−ε 1

dt
dΠ∗

t = δ (Π∗
t )

−ε ε

ε− 1

1

dt
d

(

x2,t
x1,t

)

= δ (Π∗
t )

−ε ε

ε− 1

1

x1,t

(

1

dt
dx2,t −

x2,t
x1,t

1

dt
dx1,t

)

= δ (Π∗
t )

1−ε 1

x2,t

(

1

dt
dx2,t −

x2,t
x1,t

1

dt
dx1,t

)

= δ (Π∗
t )

1−ε

(

1

x2,t

1

dt
dx2,t −

1

x1,t

1

dt
dx1,t

)

= δ (Π∗
t )

1−ε

(

((δ − επt) x2,t − eρtmtmctyt)

x2,t
−

((δ + (1− ε) πt) x1,t − eρtmtyt)

x1,t

)

= −δ (Π∗
t )

1−ε

(

πt +

(

mct
x2,t

−
1

x1,t

)

eρtmtyt

)

. (16)

2.4. The Government Problem

The government sets the nominal interest rate rt through open market operations accord-

ing to the Taylor rule (similar to Sims 2004, p.291):

drt = (θ0 + θ1πt − θ2rt)dt+ σmdBm,t, (17)

The monetary authority buys or sells government bonds such as the nominal interest rate

follows (17) and the bond market clears (government bond supply now is endogenous).

This rule reflects both a response to inflation through the parameter θ1 and a desire to

smooth interest rates over time through θ2. The constant θ0 ≡ θ2rss − θ1πss summarizes
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the attitude of the monetary authority towards either the average nominal interest rate or

the target of inflation (one target is isomorphic to the other, but both cannot be selected

simultaneously since we are dealing with a general equilibrium model). Moreover, the

term σm specifies the variance of shocks to monetary policy.

The coupon payments of the government perpetuities T b
t = −rtat are financed through

lump-sum taxes. Suppose transfers finance a given stream of government consumption

expressed in terms of its constant share of output, sgsg,t, with a mean sg and a stochastic

component sg,t that follows another Ornstein-Uhlenbeck process2:

d log sg,t = −ρg log sg,tdt+ σgdBg,t, (18)

such that

gt − T b
t = sgsg,tyt − T b

t ≡ −Tt.

2.5. Aggregation

First, we derive an expression for aggregate demand:

yt = ct + gt.

In other words, there is no possibility to transfer the output good intertemporally. With

this value, the demand for each intermediate good producer is

yit = (ct + gt)

(

pit
pt

)−ε

∀i. (19)

Using the production function we may write:

Atlit = (ct + gt)

(

pit
pt

)−ε

.

We can integrate on both sides:

At

∫ 1

0

litdi = (ct + gt)

∫ 1

0

(

pit
pt

)−ε

di

and get an expression:

ct + gt = yt =
At

vt
lt

where

vt =

∫ 1

0

(

pit
pt

)−ε

di (20)

2While we could have sgsg,t > 1, our calibration of sg and σg is such that this event will happen with
a negligibly small probability. Alternatively we could specify a stochastic process with support (0,1).
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is the aggregate loss of efficiency induced by price dispersion of the intermediate goods.

Similar to the price level, vt is a predetermined variable (Calvo’s insight):

vt =

∫ t

−∞

δe−δ(t−τ)

(

piτ
pt

)−ε

dτ .

Differentiating with respect to time gives:

1

dt
dvt = δ (Π∗

t )
−ε +

∫ t

−∞

δ
1

dt
de−δ(t−τ)

(

piτ
pt

)−ε

dτ

= δ (Π∗
t )

−ε − δ

∫ t

−∞

δe−δ(t−τ)

(

piτ
pt

)−ε

dτ +

∫ t

−∞

δe−δ(t−τ)p−ε
iτ

1

dt
dpεtdτ

= δ (Π∗
t )

−ε − δvt +

∫ t

−∞

δe−δ(t−τ)p−ε
iτ εp

ε−1
t

1

dt
dptdτ

= δ (Π∗
t )

−ε + (επt − δ)vt. (21)

For aggregate profits, we use the demand of intermediate producers in (19):

̥t =

∫ 1

0

(

pit
pt

−mct

)

yitdi

= yt

∫ 1

0

(

pit
pt

−mct

)(

pit
pt

)−ε

di

=

(

∫ 1

0

(

pit
pt

)1−ε

di−mctvt

)

yt

= (1−mctvt)yt. (22)

2.6. The HJB Equation First-Order Conditions

Given our description of the problem, we define the household’s value function as:

V (Zt;Yt) ≡ max
{(ct,lt)}∞t=0

E0

∫ ∞

0

e−ρtdt

{

log ct − ψ
l1+ϑ
t

1 + ϑ

}

dt
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s.t.

dat = ((rt + αt − πt)at − ct + wtlt + Tt +̥t) dt (7)

drt = (θ0 + θ1πt − θ2rt)dt+ σmdBm,t (17)

dvt =
(

δ (Π∗
t )

−ε + (επt − δ)vt
)

dt (21)

dx1,t =
(

(δ − (ε− 1)πt)x1,t − eρtmtyt
)

dt (13)

dx2,t =
(

(δ − επt) x2,t − eρtmtytmct
)

dt (14)

d log dt = −ρd log dtdt+ σddBd,t (2)

d logAt = −ρa logAtdt+ σadBa,t (10)

d log sg,t = −ρg log sg,tdt+ σgdBg,t (18),

in which we define the vector of relevant state variables Zt ≡ (at, rt, vt, x1,t, x2,t, dt, At, sg,t)

and Yt ≡ (yt,mct, wt, πt,Π
∗
t ,mt, Tt,̥t) = Y(Zt) to be determined in equilibrium, so far

taken as parametric by the household. By choosing the control (ct, lt) ∈ R2
+ at time t, the

HJB equation reads:

ρV (Zt;Yt) = max
(ct,lt)

dt

{

log ct − ψ
l1+ϑ
t

1 + ϑ

}

+((rt + αt − πt)at − ct + wtlt + Tt +̥t)Va

+(θ0 + θ1πt − θ2rt)Vr +
1
2
σ2
mVrr

+
(

δ (Π∗
t )

−ε + (επt − δ)vt
)

Vv

+
(

(δ − (ε− 1)πt)x1,t − eρtmtyt
)

Vx1

+
(

(δ − επt) x2,t − eρtmtytmct
)

Vx2

−(ρd log dt −
1
2
σ2
d)dtVd +

1
2
σ2
dd

2
tVdd

−(ρa logAt −
1
2
σ2
a)AtVA + 1

2
σ2
aA

2
tVAA

−(ρg log sg,t −
1
2
σ2
g)sg,tVs +

1
2
σ2
gs

2
g,tVss. (23)

A neat result about the formulation of our problem in continuous time is that the HJB

equation is, in effect, a deterministic differential equation.

The first-order conditions with respect to ct and lt for any interior solution are:

dt
ct

= Va (24)

dtψl
ϑ
t = Vawt (25)

or, eliminating the costate variable (for ψ 6= 0):

ψlϑt ct = wt
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which is the standard static optimality condition between labor and consumption.

The first-order conditions (24) and (25) make the optimal controls functions of the

state variables, ct = c(Zt;Yt), lt = l(Zt;Yt). Thus, the concentrated HJB equation reads:

ρV (Zt;Yt) = dt log c(Zt;Yt)− dtψ
l(Zt;Yt)

1+ϑ

1 + ϑ
+((rt + αt − πt)at − c(Zt;Yt) + wtl(Zt;Yt) + Tt +̥t)Va

+(θ0 + θ1πt − θ2rt)Vr +
1
2
σ2
mVrr

+
(

δ (Π∗
t )

−ε + (επt − δ)vt
)

Vv

+
(

(δ − (ε− 1)πt)x1,t − eρtmtyt
)

Vx1

+
(

(δ − επt) x2,t − eρtmtytmct
)

Vx2

−(ρd log dt −
1
2
σ2
d)dtVd +

1
2
σ2
dd

2
tVdd

−(ρa logAt −
1
2
σ2
a)AtVA + 1

2
σ2
aA

2
tVAA

−(ρg log sg,t −
1
2
σ2
g)sg,tVs +

1
2
σ2
gs

2
g,tVss. (26)

Using the envelope theorem, we obtain the costate variable Va as:

ρVa = (rt + αt − πt)Va + ((rt + αt − πt)at − ct + wtlt + Tt +̥t)Vaa

+(θ0 + θ1πt − θ2rt)Vra +
1
2
σ2
mVrra

+
(

δ (Π∗
t )

−ε + (επt − δ)vt
)

Vva

+
(

(δ − (ε− 1)πt)x1,t − eρtmtyt
)

Vx1a

+
(

(δ − επt) x2,t − eρtmtytmct
)

Vx2a

−(ρd log dt −
1
2
σ2
d)dtVda +

1
2
σ2
dd

2
tVdda

−(ρa logAt −
1
2
σ2
a)AtVAa +

1
2
σ2
aA

2
tVAAa

−(ρg log sg,t −
1
2
σ2
g)sg,tVsa +

1
2
σ2
gs

2
g,tVssa. (27)

An alternative formulation in terms of differentials is:

(ρ− rt − αt + πt)Vadt = Vaadat + (drt − σmdBm,t)Vra +
1
2
σ2
mVrra + Vvadvt

+Vx1adx1,t + Vx2adx2,t + (ddt − σddtdBd,t)Vda +
1
2
σ2
dd

2
tVddadt

+(dAt − σaAtdBa,t)VAa +
1
2
σ2
aA

2
tVAAadt+ (dsg,t − σgsg,tdBg,t)Vsa +

1
2
σ2
gs

2
g,tVssadt

or

(ρ− rt − αt + πt)Vadt+ σddtVdadBd,t + σaAtVAadBa,t + σgsg,tVsadBg,t + σmrtVradBm,t

= Vaadat + Vradrt +
1
2
σ2
mr

2
tVrra + Vvadvt + Vx1adx1,t + Vx2adx2,t

+Vdaddt +
1
2
σ2
dd

2
tVdadt+ VAadAt +

1
2
σ2
aA

2
tVAadt+ Vsadsg,t +

1
2
σ2
gs

2
g,tVsadt.
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Observe that the costate variable in general evolves according to:

dVa = Vaadat + Vradrt +
1
2
σ2
mVrradt+ Vvadvt + Vx1adx1,t + Vx2adx2,t

+Vdaddt +
1
2
σ2
dd

2
tVddadt+ VAadAt +

1
2
σ2
aA

2
tVAAadt+ Vsadsgt +

1
2
σ2
gs

2
g,tVssadt

= (ρ− rt − αt + πt)Vadt

+σddtVdadBd,t + σaAtVAadBa,t + σgsg,tVsadBg,t + σmVradBm,t, (28)

Note that (28) determines the stochastic discount factor (SDF) consistent with equilibrium

dynamics of macro aggregates, which can be used to price any asset in the economy:

d lnVa =
1

Va
dVa −

1
2
σ2
dd

2
t

V 2
da

V 2
a

dt− 1
2
σ2
aA

2
t

V 2
Aa

V 2
a

dt− 1
2
σ2
gs

2
g,t

V 2
sa

V 2
a

dt− 1
2
σ2
m

V 2
ra

V 2
a

dt

= (ρ− rt − αt + πt)dt+ σddt
Vda
Va

dBd,t + σaAt
VAa

Va
dBa,t + σgsg,t

Vsa
Va

dBg,t + σm
Vra
Va

dBm,t

−1
2
σ2
dd

2
t

V 2
da

V 2
a

dt− 1
2
σ2
aA

2
t

V 2
Aa

V 2
a

dt− 1
2
σ2
gs

2
g,t

V 2
sa

V 2
a

dt− 1
2
σ2
m

V 2
ra

V 2
a

dt.

For s > t, we may write:

e−ρ(s−t)Va(Zs;Yt)

Va(Zt;Yt)
=

exp









−
∫ s

t
(ru + αu − πu)du−

1
2

∫ s

t

V 2
da

V 2
a

σ2
dd

2
udu−

1
2

∫ s

t

V 2
Aa

V 2
a

σ2
aA

2
udu

−1
2

∫ s

t
V 2
sa

V 2
a

σ2
gs

2
g,udu−

1
2

∫ s

t
V 2
ra

V 2
a

σ2
mdu

+
∫ s

t
Vda

Va
σddudBd,u +

∫ s

t
VAa

Va
σaAudBa,u +

∫ s

t
Vsa

Va
σgsg,udBg,u +

∫ s

t
Vra

Va
σmdBm,u









.

Hence, the implied SDF is (see Hansen and Scheinkmann, 2009):

ms

mt

= e−ρ(s−t)Va(Zs;Ys)

Va(Zt;Yt)
,

and we can pin down mt = e−ρtVa(Zt;Yt).

Using the first-order condition (24) and (28), we obtain the implicit Euler equation:

d

(

dt
ct

)

= (ρ− rt − αt + πt)

(

dt
ct

)

dt

−σddt
dt
c2t
cddBd,t − σaAt

dt
c2t
cAdBa,t − σgsg,t

dt
c2t
csdBg,t − σm

dt
c2t
crdBm,t,

in which Vad = − (dt/c
2
t ) cd, VAa = − (dt/c

2
t ) cA, Vsa = − (dt/c

2
t ) cs, and Vra = − (dt/c

2
t ) cr

are expressed in terms of derivatives with respect to the optimal consumption function.

This equation has a simple interpretation: the change in the marginal utility of consump-

tion depends on the rate of time preference minus the effective real interest rate and four

additional terms that control for the innovations to the four shocks to the economy.
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Hence, by applying Itô’s formula we obtain the Euler equation:

d

(

ct
dt

)

= −

(

dt
ct

)−1

(ρ− rt − αt + πt)dt+ σ2
d

dt
ct
c2ddt+ σ2

aA
2
t

d−1
t

ct
c2Adt+ σ2

gs
2
g,t

d−1
t

ct
c2sdt

+σ2
m

d−1
t

ct
c2rdt+ σdcddBd,t + σaAtd

−1
t cAdBa,t + σgsg,td

−1
t csdBg,t + σmd

−1
t crdBm,t

or

dct = −(ρ− rt − αt + πt)ctdt+ σ2
d

d2t
ct
c2ddt+ σ2

a

A2
t

ct
c2Adt+ σ2

g

s2g,t
ct
c2sdt+ σ2

m

1

ct
c2rdt

+σdcddtdBd,t + σaAtcAdBa,t + σgsg,tcsdBg,t + σmcrdBm,t

−ctρd log dtdt+ ctσddBd,t +
1
2
ctσ

2
ddt+ σ2

ddtcddt, (29)

where c = c(Zt;Yt) denotes the household’s consumption function for a given Yt.

3. Equilibrium

The general equilibrium is given by the sequence {ct, lt, at,mct, x1,t, x2,t,̥t, wt, rt, gt, Tt,

πt,Π
∗
t , vt, yt, dt, At, sg,t}

∞
t=0 determined by the following equations:

• Euler equation, the first-order conditions of the household, and budget constraint:

Equation 1

dct = −(ρ− rt − αt + πt)ctdt+ σ2
d

d2t
ct
c2ddt+ σ2

a

A2
t

ct
c2Adt+ σ2

g

s2g,t
ct
c2sdt+ σ2

m

1

ct
c2rdt

−ctρd log dtdt+
1
2
ctσ

2
ddt+ σ2

ddtcddt

+(σdcddt + ctσd)dBd,t + σaAtcAdBa,t + σgsg,tcsdBg,t + σmcrdBm,t

Equation 2

ψlϑt ct = wt

Equation 3

dt/ct = Va

(redundant)

dat = ((rt + αt − πt)at − ct + wtlt + Tt +̥t) dt

13



• Profit maximization is given by:

Equation 4

Π∗
t =

ε

ε− 1

x2,t
x1,t

Equation 5

dx1,t = ((δ − (ε− 1)πt)x1,t − Vayt) dt

Equation 6

dx2,t = ((δ − επt) x2,t − Vaytmct) dt

Equation 7

̥t = (1−mctvt)yt

Equation 8

wt = Atmct

• Government policy:

Equation 9

drt = (θ0 + θ1πt − θ2rt)dt+ σmdBm,t

Equation 10

gt = sgsg,tyt

(redundant)

Tt = −rtat − sgsg,tyt

• Inflation evolution and price dispersion:

Equation 11

πt =
δ

1− ε

(

(Π∗
t )

1−ε − 1
)

Equation 12

dvt =
(

δ (Π∗
t )

−ε + (επt − δ)vt
)

dt

14



• Market clearing on goods and labor markets:

Equation 13

yt = ct + gt (expenditure)

Equation 14

yt =
At

vt
lt (production)

(redundant)

yt = wtlt +̥t (income)

• Stochastic processes follow:

Equation 15

ddt = −
(

ρd log dt −
1
2
σ2
d

)

dtdt+ σddtdBd,t

Equation 16

dAt = −
(

ρa logAt −
1
2
σ2
a

)

Atdt+ σaAtdBa,t

Equation 17

dsg,t = −
(

ρg log sg,t −
1
2
σ2
g

)

sg,tdt+ σgsg,tdBg,t

Further, using the household’s budget constraint, we get in equilibrium:

dat = ((rt + αt − πt)at − ct + wtlt + Tt +̥t)dt

= ((αt − πt)at − ct − gt + yt)dt

= (αt − πt)atdt,

where for dat = 0 either αt = πt and/or at = 0 for all t. It illustrates that our fiscal rule

requires αt to offset the inflation rate (in what follows we use at = 0 and αt = 0).

4. Analytical results

Since we are interested in the general equilibrium dynamics for the case where at = 0,

we use a short-cut approach and directly solve (26) with general equilibrium values for

Yt = Y(Zt). We compute V (Zt;Yt) for at = 0 at values for Y(Zt) which clear all markets.

Steady-state. Without shocks the economy moves towards its steady state. Observe that

non-stochastic steady-state values for the stochastic processes are Ass = dss = sg,ss = 1.
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• Euler equation, the first-order conditions of the household, and budget constraint:

Equation 1

πss = rss − ρ

Equation 2

ψlϑsscss = wss

Equation 3

c−1
ss = Va

• Profit maximization is given by:

Equation 4

Π∗
ss =

ε

ε− 1

x2,ss
x1,ss

Equation 5

0 = (δ − (ε− 1)πss)x1,ss − Vayss

Equation 6

0 = (δ − επt) x2,ss − Vayssmcss

Equation 7

̥ss = (1−mcssvss)yss

Equation 8

wss = Assmcss

• Government policy:

Equation 9

(This equation is an identity in the steady state.)

Equation 10

gss = sgyss

• Inflation evolution and price dispersion:

Equation 11

πss =
δ

1− ε

(

(Π∗
ss)

1−ε − 1
)

Equation 12

0 = δ (Π∗
ss)

−ε + (επss − δ)vss

16



• Market clearing on goods and labor markets (one condition is redundant):

Equation 13

yss = css + gss (expenditure)

Equation 14

yss =
Ass

vss
lss (production)

(redundant)

yss = wsslss +̥ss (income)

• Stochastic processes follow:

Equation 15

dss = 1

Equation 16

Ass = 1

Equation 17

sg,ss = 1

Given the level of steady-state inflation around which the model often is log-linearized

we obtain the following steady-state values. Using Equation 1, we obtain

rss = πss + ρ

Using Equation 11, we obtain the steady-state value Π∗
ss

Π∗
ss = (1− (ε− 1)(πss/δ))

1

1−ε

Using Equations 5 and 6 we can solve for the steady-state value of the marginal cost:

mcss = (δ − επss) (1− sg)x2,ss or mcss =
δ − επss

δ − (ε− 1)πss

x2,ss
x1,ss

which by inserting Equation 4 gives:

mcss =
δ − επss

δ − (ε− 1)πss

ε− 1

ε
Π∗

ss

17



Hence, we obtain

x1,ss = 1/ ((1− sg)(δ − (ε− 1)πss))

Using Equation 8, we obtain

wss = mcss

Using Equation 12 gives the steady-state value of price dispersion

vss =
δ (Π∗

ss)
−ε

δ − επss

Using Equation 14, we obtain

yss = lss/vss

Using Equation 13 and Equation 10 yields

yss = css/(1− sg)

Combining the last two equations gives

lss/vss = css/(1− sg)

Using Equation 2 we get

ψlϑsscss = wss

hence we can collect terms to obtain

lss =

(

wssvss
ψ(1− sg)

) 1

1+ϑ

Using Equation 7 and Equation 14 we get

̥ss = (1−mcssvss)lss/vss

Note that the TVC requires that limt→∞ e−ρtE0V (Z∗
t ) = 0, in which Z∗

t denotes the

optimal state variables in line with general equilibrium conditions.

5. Equilibrium dynamics and impulse response analysis

In this section, we obtain the reduced-form equilibrium dynamics. First, we consider the

non-linear system of stochastic differential equations which can be used to get impulse

response functions. Second, for comparison we also consider the linear approximation of

18



equilibrium dynamics around the non-stochastic steady state.

Equilibrium dynamics. It is instructive illustrate the mechanics of the new Keynesian

model. We start with the combined first-order condition and market clearing:

wt = ψlϑt ct ⇔ vtwt = ψl1+ϑ
t (1− sgsg,t)At

⇔ l1+ϑ
t =

vtwt

(1− sgsg,t)Atψ

or by (25)

ct = ((1− sgsg,t)/vt)
ϑ

1+ϑAt(mct/ψ)
1

1+ϑ . (30)

or

mct = ψl1+ϑ
t (1− sgsg,t)/vt

Our key result is that any (partial) equilibrium, i.e., any equilibrium for a given level of

marginal cost, mct, the policy functions are available analytically. In the new Keynesian

model, however, the firm takes into account expected future marginal cost and current

marginal cost whenever it has an opportunity to adjust its price. As we show below, the

equilibrium value for marginal costs is an unknown function of the states, Yt = Y(Zt).

First, we insert the equilibrium SDF into the evolution of expectations. As it turns out,

in equilibrium the discounted expected future profits, x1,t and costs x2,t are independent

from the control variables. In equilibrium where markets clear the variables follow:

dx1,t =
(

(Π∗
t )

1−εδx1,t − eρtmtyt
)

dt

=
(

((x2,t/x1,t)ε/(ε− 1))1−ε δx1,t − eρtmtyt
)

dt

=
(

((x2,t/x1,t)ε/(ε− 1))1−ε δx1,t − dt/(1− sgsg,t)
)

dt

and similarly:

dx2,t =
((

ε (Π∗
t )

1−ε − 1
)

δx2,t/(ε− 1)− eρtmtytmct
)

dt

=
((

ε ((x2,t/x1,t)ε/(ε− 1))1−ε − 1
)

δx2,t/(ε− 1)− eρtmtytmct
)

dt

=
(

((x2,t/x1,t)ε/(ε− 1))1−ε δx2,tε/(ε− 1)− δx2,t/(ε− 1)−mctdt/(1− sgsg,t)
)

dt

We are left with 5 non-linear differential equation, i.e., for the auxiliary variables x1,t,

x2,t, price dispersion vt, the Taylor rule rt, and the Euler equation, which determines

marginal costs, mct together with the 3 exogenous shock processes for sg,t, dt, At.
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To summarize, denoting the shadow price Va = λt the equilibrium dynamics are:

Equation 1

dλt = (ρ− rt + πt)λtdt+ σddtλddBd,t + σaAtλAdBa,t + σgsg,tλsdBg,t + σmrtλrdBm,t

Equation 5

dx1,t = ((δ − (ε− 1)πt)x1,t − dt/(1− sgsg,t)) dt

Equation 6

dx2,t = ((δ − επt) x2,t −mctdt/(1− sgsg,t)) dt

Equation 9

drt = (θ0 + θ1πt − θ2rt)dt+ σmdBm,t

Equation 12

dvt = (δ(1 + πt(1− ε)/δ)
ε

1−ε + (επt − δ)vt)dt

in which (1 + πt(1− ε)/δ)
1

1−ε = ε/(ε− 1)(x2,t/x1,t) determines the inflation rate and

λt = ((1− sgsg,t)/vt)
− ϑ

1+ϑ (mct/ψ)
− 1

1+ϑdt/At, (31)

⇔ mct = ψ(λt(At/dt))
−(1+ϑ)(vt/(1− sgsg,t))

ϑ

pins down marginal costs. Given a solution to the system of dynamic equations augmented

by the stochastic processes (Equations 15, 16, and 17), the general equilibrium policy

functions (as a function of relevant state variables) can be obtained from (30).

In fact, we are looking for a yet unknown function mc(Zt;Yt) which simultaneously

solves all equilibrium conditions and the maximized Bellman equation. Observe that the

costate variable (31) depends on the stochastic shocks and price dispersion. This is why

our approach to solve for the general equilibrium values has been to augment the vector

of state variables of the household’s value function by the law of motions for expectations

x1,t and x2,t, price dispersion vt. In Section 6, we use the static condition (31) recursively

to pin down marginal costs in general equilibrium.3 In particular, this approach solves for

the household’s HJB equation, given aggregate equilibrium dynamics.

Impulse response. To compute impulse response functions, we initialize a shock to the

system and solve the resulting system of ODEs using the Relaxation algorithm (Trimborn,

Koch, and Steger, 2008). For stochastic simulations, we may add stochastic processes and

make use of the policy functions obtained before (cf. Posch and Trimborn, 2011).4

3The traditional approach is to (log-)linearize the equilibrium conditions and solve the system of linear
dynamic equations. In contrast, our non-linear approach uses the recursive competitive solution and the
implied general equilibrium value function, which in turn pins down the unknown marginal costs.

4We may use the Relaxation algorithm to solve the dynamic equilibrium (non-linear) system. As long
as the derivatives of the unknown policy function do not appear in the deterministic system, we may
obtain the solution without any recursion. Otherwise, we may use the Waveform Relaxation algorithm.
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Table 1: Parameterization

ϑ 1 Frisch labor supply elasticity
ρ 0.01 subjective rate of time preference, ρ = −4 log 0.9975
ψ 1 preference for leisure
δ 0.65 Calvo parameter for probability of firms receiving signal, δ = −4 log 0.85
ε 25 elasticity of substitution intermediate goods
sg 0.05 share of government consumption
ρd 0.4214 autoregressive component preference shock, ρd = −4 log 0.9
ρa 0.4214 autoregressive component technology shock, ρa = −4 log 0.9
ρg 0.4214 autoregressive component government shock, ρg = −4 log 0.9

σd 0.1053 variance preference shock, σ2d/(2ρd) = 0.0252/(1− 0.92)
σa 0.1053 variance technology shock, σ2a/(2ρa) = 0.0252/(1− 0.92)
σg 0.1053 variance government shock, σ2g/(2ρg) = 0.0252/(1− 0.92)

σm 0.025 variance monetary policy shock
θ1 2 inflation response Taylor rule
θ2 0.5 interest rate response Taylor rule
πss 0.005 steady-state inflation

5.1. The equilibrium dynamics at the zero lower bound

This section reports the impulse responses based on the non-linear equilibrium dynamics

for the parameterization summarized in Table 1. In particular, we are interested in the

effect of the zero lower bound (ZLB) for various shocks. For this objective, we initialize

r0 = 0.5% slightly higher than the U.S. Federal Funds Interest rate, currently at 0.2%,

and then analyze shocks that drive the interest rate towards the ZLB.5

5.1.1. A monetary policy shock

Figures 1 and 2 illustrate the effect of a monetary policy shock. On impact, the negative

impulse to the interest rate drives the (shadow) interest rate below the ZLB. As the

constraint is binding, on impact the positive response of consumption and hours is not as

pronounced, the equilibrium marginal cost does not increase as much, while the inflation

response is higher. The adjustment towards the equilibrium marginal costs generally is

more sluggish. After roughly four quarters, the ZLB is no longer binding and variables

move towards their equilibrium values.

5.1.2. A preference shock

Figures 3 and 4 illustrate the effect of a preference shock. Though the ZLB by construction

does not bind on impact, the fact that exactly this is anticipated to happen leads to a

larger effect on hours and consumption on impact. In what follows, the negative impulse to

preferences drives the (shadow) interest rate below the ZLB after roughly one quarter. As

5Our parameterization corresponds to the discrete-time model (cf. Section A.3) and roughly coincides
with plausible values for the U.S. economy with steady state interest rate of 1.5%.
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now the constraint is binding, the response of consumption and hours slightly overshoots

after roughly ten quarters. The inflation response on impact is higher, but returns faster to

its equilibrium value compared to a situation where we allow for negative interest rates.

The non-linear effect of the ZLB on the dynamics for price dispersion in this economy

is clearly visible in Figure 3. The adjustment towards the equilibrium marginal costs

generally is more sluggish. Finally, after roughly 3 years (12 quarters), the ZLB does no

longer bind and the variables gradually move towards their equilibrium values.

5.1.3. A productivity shock

Figures 5 and 6 illustrate the effect of a productivity shock. Except for the response for

consumption, the effects of the ZLB on the economic aggregates of a positive productivity

shock are roughly comparable to those of a negative preference shock (see above). As we

show in Figure 6, optimal consumption increases on impact but not as much as without the

presence of the ZLB (while the negative effect on hours is more pronounced). Moreover,

the economy escapes the ZLB slightly earlier after roughly 10 quarters.

5.1.4. A government spending shock

Figures 7 and 8 illustrate the effect of a government spending shock in the form of a more

restrictive fiscal policy. We do not find any effects of the ZLB on economic dynamics since

the constraint is never binding (and by construction does not bind in on impact). This is

remarkable since restrictive fiscal policy typically lowers the interest rate. However, since

the dynamics of the interest dynamics to return to its steady-state are much stronger such

that households and firms anticipate that the ZLB does not bind at any point. This result

is robust to higher values for the share of government consumption.

6. Numerical Solution in the policy function space

In what follows, we solve the concentrated HJB equation (26) using a collocation method

based on the Matlab CompEcon toolbox (Miranda and Fackler 2002). Define the state

space Uz ⊆ Rn and the control region Ux ⊆ Rm. We may write the control problem as

ρV (Zt;Yt) = f(Zt,Xt) + g(Zt,Xt)
⊤VZ + 1

2
tr
(

σ(Zt,Xt)σ(Zt,Xt)
⊤VZZ

)

(32)

in which Zt ∈ Uz denotes the n-vector of states, Xt ∈ Ux denotes the m-vector of controls,

and Yt = Y(Zt) is determined in general equilibrium as a function of the state variables.

We define the reward function f : Uz × Ux → R, the drift function g : Uz × Ux → Rn, the

diffusion function σ : Uz × Ux → Rn×k, VZ is an n-vector and VZZ is a n× n matrix, and
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tr(A) denotes the trace of the square matrix A. In general, the state equation follows

dZt = g(Zt,Xt;Yt) dt+ σ(Zt,Xt) dBt

where Bt is an k-vector of k independent standard Brownian motions. The instantaneous

covariance of Zt is σ(Zt,Xt)σ(Zt,Xt)
⊤, which may be less than full rank.

First, the first-order conditions (24) and (25) yield optimal controls as a function of

the states and costate variables:

Xt = X(Zt, VZ(Zt;Yt);Yt) ≡

[

c(Zt, VZ(Zt;Yt);Yt)

l(Zt, VZ(Zt;Yt);Yt)

]

=

[

(Va(Zt;Yt))
−1dt

(Va(Zt;Yt)wt/(dtψ))
1/ϑ

]

.

Second, we define the reward function as a function of the states and the optimal controls:

f(Zt,Xt) = dt log ct − dtψ
l1+ϑ
t

1 + ϑ
.

Third, we define the drift function of the state transition equations:

g(Zt,Xt) =

































(rt − πt)at − ct + wtlt + Tt +̥t

θ0 + θ1πt − θ2rt

δ (Π∗
t )

−ε + (επt − δ)vt

(δ − (ε− 1)πt)x1,t − dt/(1− sgsg,t)

(δ − επt) x2,t −mctdt/(1− sgsg,t)

−(ρd log dt −
1
2
σ2
d)dt

−(ρa logAt −
1
2
σ2
a)At

−(ρg log sg,t −
1
2
σ2
g)sg,t

































.

Fourth, we define the diffusion function of the state transition equations:

σ(Zt,Xt) =

































0 0 0 0 0 0 0 0

0 σm 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 σddt 0 0

0 0 0 0 0 0 σaAt 0

0 0 0 0 0 0 0 σgsg,t

































.

As an initial guess we may use the solution of the linear-quadratic problem.6 Since

6Note that for an initial guess we may use the policy function as a time-invariant function of the state
variables (and auxiliary variables, which in fact are functions of the state variables) obtained from either
the non-linear equilibrium dynamics, a (log)linear approximation, or the linear-quadratic problem.
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Table 2: Summary of the solution algorithm in the policy function space

Step 1 (Initialization) Provide an initial guess for the coefficients for a given set
of collocation nodes and basis functions.

Step 2 (Solution) Compute the optimal value of the controls for the set of nodal
values for the state and costate variables.

Step 3 (Update) Update the value function coefficients.
Step 4 (Iteration) Repeat Steps 2 and 3 until convergence.

the functional form of the solution is unknown, our basic strategy for solving the HJB

equation is to approximate V (Zt;Yt) ≈ φ(Zt;Yt)v, in which v is an n-vector of coefficients

and φ is the n × n basis matrix. Starting from the concentrated HJB equation (32), our

initial guess for the coefficients from an approximation of the value function and/or control

variables for given set of collocation nodes and basis functions φ(Zt;Yt) reads:

ρφ(Zt;Yt)v = f(Zt,Xt) + g(Zt,Xt)
⊤φZ(Zt;Yt)v +

1
2
tr
(

σ(Zt,Xt)σ(Zt,Xt)
⊤φZZv

)

or

v =
(

ρφ(Zt;Yt)− g(Zt,Xt)
⊤φZ(Zt;Yt)−

1
2
tr
(

σ(Zt,Xt)σ(Zt,Xt)
⊤φZZ

))−1
f(Zt,Xt).

Using the coefficients we compute the optimal value of the controls for the set of nodal

values for the states, which in turn is used to update the value function coefficients. We

iterate computing controls and updating the coefficients until convergence (cf. Table 2).

It illustrates the recursive nature of the problem: households take as given aggregate

variables Yt which, however, depend on households’ decisions. We start the recursion

using Y
(0)
t = Yss, then update the vector of aggregate variables Y

(i)
t = Y(Zt,X(Zt)

(i−1))

for i = 1, ... until convergence. If necessary, we solve this recursive problem by adding

a state variable for government liabilities.7 Finally, we impose general equilibrium by

considering optimal policy functions c(Zt;Y(Zt)), l(Zt;Y(Zt)).

Impulse response. Given our solution V (Zt;Y(Zt)) ≈ φ(Zt;Y(Zt)v, we may simulate

the optimal values of the controls for a set of nodal values for the state variables. We may

use the Matlab CompEcon toolbox to conduct a Monte Carlo simulation of a (controlled)

multidimensional Itô processes. In particular, we obtain impulse response functions by

setting σ(Zt,Xt) = 0 and initializing the impulse for one of the states.

7This is particularly important for cases where aggregate variables depend on government liabilities.
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7. Results

[to be completed]

8. Estimation

[to be completed]

9. Concluding Remarks

[to be completed]
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Figure 1: Impulse responses to a monetary policy shock
In this figure we show (from left to right, top to bottom) the simulated responses for an impulse to
the interest rate and its effect to the price dispersion, marginal cost, inflation, the preference shock, the
technology shock and the government expenditure shock based on the non-linear equilibrium dynamics.
While the blue solid line considers the zero lower bound, the red dashed line allows for negative values.
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Figure 2: Impulse responses to a monetary policy shock
In this figure we show (from left to right, top to bottom) the simulated responses for an impulse to the
interest rate and its effect on optimal consumption, the auxiliary variable for expected revenues, optimal
hours, and the auxiliary variable for expected cost based on the non-linear equilibrium dynamics. While
the blue solid line considers the zero lower bound, the red dashed line allows for negative values.
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Figure 3: Impulse responses to a preference shock
In this figure we show (from left to right, top to bottom) the simulated responses for an impulse to
preferences and its effect to the interest rate, price dispersion, marginal cost, inflation, the technology
shock and the government expenditure shock based on the non-linear equilibrium dynamics. While the
blue solid line considers the zero lower bound, the red dashed line allows for negative values.
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Figure 4: Impulse responses to a preference shock
In this figure we show (from left to right, top to bottom) the simulated responses for an impulse to
preferences and its effect on optimal consumption, the auxiliary variable for expected revenues, optimal
hours, and the auxiliary variable for expected cost based on the non-linear equilibrium dynamics. While
the blue solid line considers the zero lower bound, the red dashed line allows for negative values.
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Figure 5: Impulse responses to a productivity shock
In this figure we show (from left to right, top to bottom) the simulated responses for an impulse to
technology and its effect to the interest rate, price dispersion, marginal cost, inflation, the preference
shock and the government expenditure shock based on the non-linear equilibrium dynamics. While the
blue solid line considers the zero lower bound, the red dashed line allows for negative values.
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Figure 6: Impulse responses to a productivity shock
In this figure we show (from left to right, top to bottom) the simulated responses for an impulse to
technology and its effect on optimal consumption, the auxiliary variable for expected revenues, optimal
hours, and the auxiliary variable for expected cost based on the non-linear equilibrium dynamics. While
the blue solid line considers the zero lower bound, the red dashed line allows for negative values.
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Figure 7: Impulse responses to a government spending shock
In this figure we show (from left to right, top to bottom) the simulated responses for an impulse to
government expenditure and its effect to the interest rate, price dispersion, marginal cost, inflation, the
preference shock and the technology shock based on the non-linear equilibrium dynamics. While the blue
solid line considers the zero lower bound, the red dashed line allows for negative values.
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Figure 8: Impulse responses to a government spending shock
In this figure we show (from left to right, top to bottom) the simulated responses for an impulse to gov-
ernment expenditure and its effect on optimal consumption, the auxiliary variable for expected revenues,
optimal hours, and the auxiliary variable for expected cost based on the non-linear equilibrium dynamics.
While the blue solid line considers the zero lower bound, the red dashed line allows for negative values.
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A. Appendix

A.1. Linear-Quadratic Control

Typically, linear and quadratic approximants of g and f are constructed by forming the

first- and second-order Taylor expansion around the steady-state (Z∗,X∗),

f(Zt,Xt) ≈ f ∗ + f ∗
Z

⊤(Zt − Z
∗) + f ∗

X

⊤(Xt − X
∗) + 1

2
(Zt − Z

∗)⊤f ∗
ZZ(Zt − Z

∗)

+(Zt − Z
∗)⊤f ∗

ZX(Xt − X
∗) + 1

2
(Xt − X

∗)⊤f ∗
XX(Xt − X

∗),

g(Zt,Xt) ≈ g∗ + g∗Z(Zt − Z
∗) + g∗X(Xt − X

∗),

where f ∗, g∗, f ∗
Z, f

∗
X, g

∗
Z, g

∗
X, f

∗
ZZ, f

∗
ZX, and f

∗
XX are the values and partial derivatives of f and

g evaluated at the steady-state. Thus, the approximate solution to the general problem

is supposed to capture the local dynamics around that stationary value.

Collecting terms, we may identify the coefficient of the linear-quadratic problem as

f̃0 ≡ f ∗ − f ∗
Z

⊤
Z

∗ − f ∗
X

⊤
X

∗ + 1
2
Z

∗⊤f ∗
ZZZ

∗ + Z
∗⊤f ∗

ZXX
∗ + 1

2
X

∗⊤f ∗
XXX

∗,

f̃Z ≡ f ∗
Z − f ∗

ZZZ
∗ − f ∗

ZXX
∗,

f̃X ≡ f ∗
X − f ∗

ZX

⊤
Z

∗ − f ∗
XXX

∗,

f̃ZZ ≡ f ∗
ZZ, f̃ZX ≡ f ∗

ZX, f̃XX ≡ f ∗
XX,

g̃0 ≡ g∗ − g∗ZZ
∗ − gXX

∗, g̃Z ≡ g∗Z, g̃X ≡ g∗X.

where

f̃(Zt,Xt) = f̃0 + f̃⊤
Z Zt + f̃⊤

X Xt +
1
2
Z

⊤
t f̃ZZZt + Z

⊤
t f̃ZXXt +

1
2
X

⊤
t f̃XXXt, (A.1)

and a linear state transition function

g̃(Zt,Xt) = g̃0 + g̃ZZt + g̃XXt, (A.2)

Zt is the n × 1 state vector, Xt is the m × 1 control vector, and the parameters are f̃0,

a constant; f̃Z, a n × 1 vector; f̃X, a m × 1 vector; f̃ZZ, an n × n matrix, f̃ZX, an n ×m

matrix; f̃XX, an m×m matrix; g̃0, an n× 1 vector; g̃Z, an n×n matrix; and g̃X, an n×m

matrix.

As from (23), the HJB equation for the (non-stochastic) problem reads

ρV (Zt) = max
Xt∈U

{

f̃(Zt,Xt) + VZ(Zt)
⊤g̃(Zt,Xt)

}

, (A.3)

Observe that we have m first-order conditions,

f̃X + f̃⊤
ZXZt + f̃XXXt + g̃⊤XVZ(Zt) = 0
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which imply

Xt = −f̃−1
XX

[

f̃X + f̃⊤
ZXZt + g̃⊤XVZ(Zt)

]

, (A.4)

that is, the controls are linear in the state and the costate variables. We proceed as follows.

The solution of the linear-quadratic problem is the value function which satisfies both the

maximized HJB equation and the first-order condition. We may guess a value function

and derive conditions under which the guess indeed is the solution to our problem.

An educated guess for the value function is

V (Zt) = C0 + Λ⊤
ZZt +

1
2
Z

⊤
t ΛZZZt (A.5)

in which the parameters C0, a constant; ΛZ a n× 1 vector; and ΛZZ, a n× n matrix need

to be determined. This implies that the costate variable, a n × 1 vector (and thus the

controls) is linear in the states

VZ(Zt) = ΛZ + ΛZZZt (A.6)

Inserting everything into the maximized HJB equation gives

ρC0 + ρΛ⊤
ZZt + ρ1

2
Z

⊤
t ΛZZZt = f̃0 + f̃⊤

Z Zt + f̃⊤
X Xt +

1
2
Z

⊤
t f̃ZZZt + Z

⊤
t f̃ZXXt +

1
2
X

⊤
t f̃XXXt

+Λ⊤
Z [g̃0 + g̃ZZt + g̃XXt] + Z

⊤
t ΛZZ [g̃0 + g̃ZZt + g̃XXt]

where the vector components are:

Xt = −f̃−1
XX

[

f̃X + g̃⊤XΛZ +
[

f̃⊤
ZX + g̃⊤XΛZZ

]

Zt

]

,

X
⊤
t f̃XXXt =

[

f̃⊤
X + Λ⊤

Z g̃X

]

f̃−1
XX

[

f̃X + g̃⊤XΛZ

]

+ 2
[

f̃⊤
X + Λ⊤

Z g̃X

]

f̃−1
XX

[

f̃⊤
ZX + g̃⊤XΛZZ

]

Zt

+Z
⊤
t

[

f̃⊤
ZXt

+ g̃⊤XΛZZ

]⊤

f̃−1
XX

[

f̃⊤
ZX + g̃⊤XΛZZ

]

Zt

Finally equating terms with equal powers determines our coefficients recursively

ρC0 = f̃0 − f̃⊤
X f̃

−1
XX

[

f̃X + g̃⊤XΛZ

]

+ 1
2

[

f̃⊤
X + Λ⊤

Z g̃X

]

f̃−1
XX

[

f̃X + g̃⊤XΛZ

]

+Λ⊤
Z

[

g̃0 − g̃Xf̃
−1
XX

[

f̃X + g̃⊤XΛZ

]]

,

ρΛ⊤
Z = f̃⊤

Z −
[

f̃X + g̃⊤XΛZ

]⊤

f−1
XX
f̃⊤
ZX + Λ⊤

Z g̃Z + g̃⊤0 ΛZZ −
[

f̃X + g̃⊤XΛZ

]⊤

f−1
XX
g̃⊤XΛZZ,

ρ1
2
ΛZZ = 1

2
f̃ZZ − f̃ZXf̃

−1
XX

[

f̃⊤
ZX + g̃⊤XΛZZ

]

+ 1
2

[

f̃⊤
ZX + g̃⊤XΛZZ

]⊤

f̃−1
XX

[

f̃⊤
ZX + g̃⊤XΛZZ

]

+1
2
ΛZZg̃Z + 1

2
g̃⊤ZΛZZ − ΛZZg̃Xf̃

−1
XX

[

f̃⊤
ZX + g̃⊤XΛZZ

]

.
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Rewriting the last condition gives

0 = f̃ZZ + ΛZZ(g̃Z −
1
2
ρIn) + (g̃Z − 1

2
ρIn)

⊤ΛZZ

−
[

f̃ZXf̃
−1
XX
f̃⊤
ZX + f̃ZXf̃

−1
XX
g̃⊤XΛZZ + ΛZZg̃Xf̃

−1
XX
f̃⊤
ZX + ΛZZg̃Xf̃

−1
XX
g̃⊤XΛZZ

]

,

where In is the identity matrix, which gives ΛZZ and thus recursively, ΛZ and C0 as a

solution of an algebraic Ricatti equation. The vector of coefficients ΛZ is obtained from

ΛZ =
[

ρIn + f̃ZXf̃
−1
XX
g̃⊤X + ΛZZg̃Xf̃

−1
XX
g̃⊤X − g̃⊤Z

]−1 [

f̃⊤
Z − f̃⊤

X f̃
−1
XX

[

f̃⊤
ZX + g̃⊤XΛZZ

]

+ g̃⊤0 ΛZZ

]⊤

.

This closes the proof that the guess indeed is the solution.

A.2. Linear approximations

In order to analyze local dynamics, the traditional approach is to approximate the dynamic

equilibrium system around steady-state values. We define we x̂t ≡ (xt − xss)/xss, where

xss is the steady-state value for the variable xt. Thus, we can write xt = (1 + x̂t)xss.

• Euler equation, the first-order conditions of the household, and budget constraint:

Equation 1

Et(dλ̂t) = (−(δ − (ε− 1)πss)λssx̂1,t + (δ − (ε− 1)πss)λssx̂2,t − rssλssr̂t) dt

Equation 2

ϑl̂t + ĉt = ŵt

Equation 3

d̂t − ĉt = λ̂t

(redundant)

dât = 0
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• Profit maximization is given by:

Equation 4

Π̂∗
t = x̂2,t − x̂1,t

Equation 5

dx̂1,t =
(

ε(δ − (ε− 1)πss)x1,ssx̂1,t − (ε− 1)(δ − (ε− 1)πss)x1,ssx̂2,t

−λssyss(λ̂t + ŷt)
)

dt

Equation 6

dx̂2,t =
(

ε(δ − (ε− 1)πss)x2,ssx̂1,t + ((1− ε)(δ − επss)− επss)x2,ssx̂2,t

−λssyssmcss(λ̂t + ŷt + m̂ct)
)

dt

Equation 7

(1−mcssvss) ˆ̥ t = −mcssvss(m̂ct + v̂t) + (1−mcssvss)ŷt

Equation 8

ŵt = Ât + m̂ct

• Government policy:

Equation 9

dr̂t = (−θ1(δ − (ε− 1)πss)x̂1,t + θ1(δ − (ε− 1)πss)x̂2,t − θ2rssr̂t) dt+ σmdBm,t

Equation 10

ĝt = ŝg,t + ŷt

(redundant)

TssT̂t = −rssass(r̂t + ât)− sgyss(ŝg,t + ŷt)

• Inflation evolution and price dispersion:

Equation 11

ΠssΠ̂t = δ (Π∗
ss)

1−ε Π̂∗
t , for Πt ≡ 1 + πt

Equation 12

dv̂t =
(

επssvssΠ̂
∗
t + (επss − δ)vssv̂t

)

dt
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• Market clearing on goods and labor markets:

Equation 13

yss(ŷt − ĝt) = css(ĉt − ĝt) (expenditure)

Equation 14

ŷt = Ât + l̂t − v̂t (production)

(redundant)

yssŷt = wsslss(ŵt + l̂t) +̥ss ˆ̥ t (income)

• Stochastic processes follow:

Equation 15

dd̂t = −
(

ρd −
1
2
σ2
d

)

d̂tdt+ σdd̂tdBd,t

Equation 16

dÂt = −(ρa −
1
2
σ2
a)Âtdt+ σaÂtdBa,t

Equation 17

dŝg,t = −
(

ρg −
1
2
σ2
g

)

ŝg,tdt+ σgŝg,tdBg,t

Recall that from (31) we obtain the linearized static condition

m̂ct = −(1 + ϑ)(λ̂t + Ât − d̂t) + ϑv̂t + ϑsg/(1− sg)ŝg,t
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Hence, we may summarize the local equilibrium dynamics around steady-state values as:

dx̂1,t =
(

[ε(δ − (ε− 1)πss)]x1,ssx̂1,t

+ [−(ε− 1)(δ − (ε− 1)πss)x1,ss] x̂2,t

−[1/(1− sg)]d̂t − [sg/(1− sg)
2]ŝg,t

)

dt

dx̂2,t =
(

[ε(δ − (ε− 1)πss)x2,ss] x̂1,t

+ [(1− ε)(δ − επss)− επss] x2,ssx̂2,t

−[ϑ/(1− sg)]v̂t + [(1 + ϑ)/(1− sg)](λ̂t + Ât)

+[(1 + ϑ−mcss)/(1− sg)]d̂t − [(ϑ+mcss)sg/(1− sg)
2]ŝg,t

)

dt

dv̂t =
(

[−επssvss]x̂1,t + [επssvss]x̂2,t + [επss − δ]vssv̂t

)

dt

dr̂t =
(

[−θ1(δ − (ε− 1)πss)]x̂1,t + [θ1(δ − (ε− 1)πss)]x̂2,t

−[θ2rss]r̂t

)

dt+ σmdBm,t

dλ̂t =
(

[−(δ − (ε− 1)πss)λss]x̂1,t + [(δ − (ε− 1)πss)λss]x̂2,t + [−λss]rssr̂t

)

dt

+σd

(

∂λd
∂x1,t

∣

∣

∣

∣

ss

x1,ssx̂1,t +
∂λd
∂x2,t

∣

∣

∣

∣

ss

x2,ssx̂2,t + ...

)

dBd,t

+σa

(

∂λA
∂x1,t

∣

∣

∣

∣

ss

x1,ssx̂1,t +
∂λA
∂x2,t

∣

∣

∣

∣

ss

x2,ssx̂2,t + ...

)

dBa,t

+σg

(

∂λs
∂x1,t

∣

∣

∣

∣

ss

x1,ssx̂1,t +
∂λs
∂x2,t

∣

∣

∣

∣

ss

x2,ssx̂2,t + ...

)

dBg,t

+σm

(

∂λr
∂x1,t

∣

∣

∣

∣

ss

x1,ssx̂1,trss +
∂λr
∂x2,t

∣

∣

∣

∣

ss

x2,ssx̂2,trss + ...

)

dBm,t

dd̂t = −(ρd −
1
2
σ2
d)d̂tdt+ σdd̂tdBd,t

dÂt = −(ρa −
1
2
σ2
a)Âtdt+ σaÂtdBa,t

dŝg,t = −
(

ρg −
1
2
σ2
g

)

ŝg,tdt+ σgŝg,tdBg,t

in which we define percentage deviations x̂t ≡ (xt − xss)/xss.
8

In order to analyze local dynamics around the non-stochastic steady state, we need to

study the eigenvalues of the Jacobian matrix evaluated at the steady state,

8Note that we used partial derivatives

∂πt

∂x1,t
=

δ

1− ε

∂ (Π∗
t )

1−ε

∂x1,t
= −δ (Π∗

t )
1−ε

/x1,t = −(δ − (ε− 1)πss)/x1,t

∂πt

∂x2,t
=

δ

1− ε

∂ (Π∗
t )

1−ε

∂x2,t
= (δ − (ε− 1)πss)/x2,t

∂Π∗
t

∂x1,t
= −Π∗

t /x1,t,
∂Π∗

t

∂x2,t
= Π∗

t /x2,t
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







x̂1,t

x̂2,t

v̂t

r̂t

λ̂t

d̂t

Ât

ŝg,t

































=

































a11 a12 0 0 0 a16 0 a18

a21 a22 a23 0 a25 a26 a27 a28

a31 a32 a33 0 0 0 0 0

a41 a42 0 a44 0 0 0 0

a51 a52 0 a54 0 0 0 0

0 0 0 0 0 a66 0 0

0 0 0 0 0 0 a77 0

0 0 0 0 0 0 0 a88

































































x̂1,t

x̂2,t

v̂t

r̂t

λ̂t

d̂t

Ât

ŝg,t

































dt+

































0 0 0 0

0 0 0 0

0 0 0 0

b41 0 0 0

b51 b52 b53 b54

0 b62 0 0

0 0 b73 0

0 0 0 b84

































dBt

where a11 ≡ ε(δ − (ε− 1)πss)x1,ss

a12 ≡ −(ε− 1)(δ − (ε− 1)πss)x1,ss

a16 ≡ −1/(1− sg)

a18 ≡ −sg/(1− sg)
2

a21 ≡ ε(δ − (ε− 1)πss)x2,ss

a22 ≡ ((1− ε)(δ − επss)− επss)x2,ss

a23 ≡ −ϑ/(1− sg)

a25 ≡ (1 + ϑ)/(1− sg)

a26 ≡ (1 + ϑ−mcss)/(1− sg)

a27 ≡ (1 + ϑ)/(1− sg)

a28 ≡ −(ϑ+mcss)sg/(1− sg)
2

a31 ≡ −επssvss

a32 ≡ επssvss

a33 ≡ (επss − δ)vss

a41 ≡ −θ1(δ − (ε− 1)πss)

a42 ≡ θ1(δ − (ε− 1)πss)

a44 ≡ −θ2rss

a51 ≡ −(δ − (ε− 1)πss)λss

a52 ≡ (δ − (ε− 1)πss)λss

a54 ≡ −λssrss

a66 ≡ −(ρd −
1
2
σ2
d)

a77 ≡ −(ρa −
1
2
σ2
a)

a88 ≡ −(ρg −
1
2
σ2
g)

and the vector of shocks dBt ≡ [dBm,t, dBd,t, dBa,t, dBg,t]
⊤
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A.3. Calibration of model parameters

Suppose that we want to parameterize the Ornstein-Uhlenbeck process and the first-order

autoregressive process:

dxt = −ρxxtdt+ σxdBt and x̃t = ρ̃xx̃t + σ̃xεt, x0 = x̃0. (A.7)

Bt is a standard Brownian motion and εt ∼ N(0, 1). Observe that the solutions are:

xt = x0e
−ρxt + e−ρxt

∫ t

0

eρxs dBs and x̃t = ρ̃txx0 + ρ̃txσ̃x

t
∑

i=1

ρ̃−i
x εi

Let us calibrate ρx, given a parametric value for ρ̃x at the quarterly frequency, such that

the expected value E(x1) = E(x̃4), and the variance V ar(x1) = V ar(x̃4) coincide. It is

straightforward to show that E(x1) = e−ρxx0 and E(x̃4) = ρ̃4xx0. Hence, we obtain ρx:

e−ρx = ρ̃4x ⇒ ρx ≡ −4 log(ρ̃x)

Itô isometry:

V ar(x1) = σ2
xe

−2ρx

∫ 1

0

e2ρxs dt =
σ2
x

2ρx

(

1− e−2ρx
)

and

V ar(x̃4) = σ̄2
x

4
∑

i=1

ρ̄(i−1)2
x

Equating terms implies:

σ2
x ≡ 2

ρxσ̄
2
x

1− e−2ρx

4
∑

i=1

ρ̄(i−1)2
x .

As an example, ρ̃x = 0.9 and σ̃x = 0.05 implies ρx ≈ 0.42 and σx ≈ 0.11. Both processes

converge to the same limiting distribution, V ar(x) = σ2
x/(2ρx) = V ar(x̃) = σ̃2

x/(1− ρ̃2x).
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