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Abstract

We show how to formulate and solve a New Keynesian model in continuous time.
In our economy, monopolistic firms engage in infrequent price setting 4 la Calvo.
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in terms of 8 state variables. Our nonlinear and global numerical solution method
allows us to compute equilibrium dynamics and impulse response functions in the
time space, the collocation method based on Chebychev polynomials is used to
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1. Introduction

New Keynesian (NK) models of the business cycle have become a fundamental tool in the
study of aggregate fluctuations and in the design of monetary and fiscal policies. They fill
the pages of journals and they are extensively used by central banks all around the world
to assess the effects of different monetary interventions.

Nearly all of this extensive literature has worked with a formulation of the model in
discrete time. This was in part because of the familiarity of macroeconomists with discrete
time forms of previous models of the business cycle, as the real business cycle model, and
in part because of the natural mapping of discrete time models with data, which come by
construction in discrete observations.

There are, however, reasons to develop an alternative formulation of the model in con-
tinuous time. Dynamic equilibrium models written in continuous time can take advantage
of a powerful set of mathematical tools developed in the fields of stochastic processes, op-
timal control, and PDEs. Thanks to these tools, many issues, such as adjustment costs,
kinks, or other significant non-linearities can be easily handled and, often, we can even
find closed-form solutions. This is particularly important because many interesting em-
pirical questions or the zero lower bound (ZLB) of nominal interest rates lead directly to
these type of situations. Furthermore, we can rely on a variety of well-tested numerical
methods to solve the model and the associated continuous-time Hamilton-Jacobi-Bellman
(HJB) equation. One key aspect of the HJB equation is that, thanks to the properties of
stochastic calculus, it is deterministic even when we have underlying uncertainty. Thus,
since we do not need to compute expectations (a burdensome step in discrete time Bellman
equations), the solution of the model is faster and much simpler.

Motivated by these arguments, we show how to formulate and solve nonlinearly an
otherwise standard NK model in continuous time. The basic structure of the economy
is as follows. A representative household consumes, saves, and supplies labor. The fi-
nal output is assembled by a final good producer, which uses as inputs a continuum of
intermediate goods manufactured by monopolistic competitors. The intermediate good
producers rent labor to manufacture their good. Also, these intermediate good producers
face the constraint that they can only change prices following a Calvo’s pricing rule. Fi-
nally, there is a government that fixes the one-period nominal interest rate through open
market operations with public debt. In addition, the government taxes and consumes. We
will have four shocks: one to preferences (which can be loosely interpreted as a shock to
aggregate demand), one to technology (interpreted as a shock to aggregate supply), one to
monetary policy, and one to fiscal policy. Then, we will show how the equilibrium system
can be written in terms of 8 state variables. Our nonlinear and global numerical solution
technique allows us to compute equilibrium dynamics and impulse response functions in

the time space, the collocation method is based on Chebychev polynomials to compute



the HJB equation and thus the solution in the policy function space.

We do not advocate the use of continuous time over discrete time in all cases and
applications. Both approaches are sensible and the choice of one versus the other should
depend on the application and the insights we get from it and not from any a priori
positioning. This paper merely aims at expanding the set of tools available to researchers
by showing how, in a real life example, we can handle rich models in macroeconomics
using continuous time.

The rest of the paper is organized as follows. First, we present a simple NK model in
continuous time and derive the HJB equation of the household. In Section 3, we define
the equilibrium of the economy. Section 4 summarizes some analytical results. Section 5
analyzes the equilibrium dynamics and holds our main results on the effects of the zero
lower bound on macro dynamics. Section 6 describes our numerical solution method in
the policy function space, Section 7 holds some numerical results. We complete the paper
with a description of the estimation process and with some final remarks. An appendix

offers further details on some technical aspects of the paper.

2. Our Model

We describe now the environment that we use for our investigation. It is a rather straight-

forward NK model except for the continuous structure of time.

2.1. Households

There is a representative household in the economy that maximizes the following lifetime

utility function, which is separable in consumption, ¢; and hours worked, [;:

00 ltl—&-ﬂ
EQ/O e_ptdt {log Ct — wl n 19} dt (].)

where p is the subjective rate of time preference, 9 is the inverse of Frisch labor supply

elasticity, and d; is a preference shock whose log follows an Ornstein-Uhlenbeck process:
dlogd; = —pylogdidt + 04d By (2)
where By, is a standard Brownian motion (also Wiener’s process), or, by It6’s lemma:
dd; = — (pd log d; — %afl) didt + o4d;dBgy.

Below, for this shock and the other two, we will use both the formulation in level and in
logs depending on the context and easiness of notation.

The household can trade on Arrow securities (which we exclude to save on notation)



and on a nominal government bonds b; at a nominal interest rate of r, (fixed coupon
payments). Let n; denote the number of shares and p? the equilibrium price of bonds.
Suppose the household earns a disposable income of r;b; + pywily + pi Ly + pifF ¢+, Where
pe is the price level (price of the consumption good), w; is the real wage, T} is a lump-
sum transfer, and F; are the profits of the firms in the economy; the household’s budget
constraint is:

7¢by — pect + pewely + et + pekF ¢

dn; = dt. 3

Let bond prices follow:
dpff) = atpfdt (4)

in which «; denotes the endogenous rate of change, which is determined in general equi-
librium (in equilibrium prices are function of the state variables, for example, by fixing
oy the bond supply has to accommodate so as to permit the bond’s nominal interest rate

being admissible). The household’s financial wealth, b; = n;p?, is then given by:
dby = (riby — peey + prwily + piTy + poF ¢ )dt + aubydt, (5)
Let prices p; follow the process:
dp; = mpedt (6)

such that the (realized) rate of inflation is locally non-stochastic. We can interpret dp;/p;
as the realized inflation over the period [t,t + dt] and 7; as the inflation rate.!
Letting a; = b;/p; denote real financial wealth and using It6’s formula, the household’s

real wealth evolves according to:

. db, b . ribe — prce + prwily + pily + ol e+ uby by
dat = — Dt = dt — —27Ttptdt
Dt t Dt Dy
or:
dag = ((re + 0w — m)ay — ¢ +wile + Ty + Fo) dt (7)

2.2. The Final Good Producer

There is one final good is produced using intermediate goods with the following production

1 e—1 ﬁ
v — ( / g di) ®)
0

where ¢ is the elasticity of substitution.

function:

1 As it turns out below, we can just set oy = 0 if we require that a; = 0 for all £. Our analysis, however,
is not necessarily restricted to the case of no government liabilities. In case of government debt, oy = 7
is required to keep government liabilities constant in real terms for the specified fiscal rule below.



Final good producers are perfectly competitive and maximize profits subject to the
production function (8), taking as given all intermediate goods prices p; and the final
good price p;. As a consequence the input demand functions associated with this problem

are:

and

1 —
p— ( / p%fdi> . (9)
0

2.3. Intermediate Good Producers

Each intermediate firm produces differentiated goods out of labor using:
Yir = Aeliy
where [;; is the amount of the labor input rented by the firm and where A, follows:
dlog Ay = —p,log Aydt + 0,dB, ;. (10)

Therefore, the real marginal cost of the intermediate good producer is the same across
firms:

me; = wy /Ay

The monopolistic firms engage in infrequent price setting & la Calvo. We assume that
intermediate good producers reoptimize their prices p; only at the time when a price-
change signal is received. The probability (density) of receiving such a signal h periods
from today is assumed to be independent of the last time the firm got the signal, and to
be given by:

se %" §>0.

A number of firms ¢ will receive the price-change signal per unit of time. All other firms

keep their old prices. Therefore, prices are set to maximize the expected discounted profits:

> )\T %
max Et/ e 01 (%ym— - chyiT> dr
t T
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where A, is the time t value of a unit of consumption in period 7 to the household that
value future prices from the perspective of the household (hence, the pricing kernel for

the firm). Observe that e~ %("=%) denotes the probability of not having received a signal



during 7 — t,

1- / 5e g =1 — (=07 4 1) = 700, (11)
t

After dropping constants, the first-order condition reads:

o0 1—e o0 —E€
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We may write the first-order condition as:

£ € Xoy
— 1pt$2’t t e—1z, ( )

PitT1t =
€

in which II} = p;;/p; is the ratio between the optimal new price (common across all firms

that can reset their prices) and the price of the final good and where we have defined the

fo%) 1—e
Ty = Et/ )\Te";(T’t) <%) y.dr,
t T
o0 p —E&
Toy = Et/ )\Te_é(T_t)ch (p—t) y,dr,
t T

Differentiating x;; with respect to time gives:

auxiliary variables:

1 1 o0 1 e8] 1—¢ 1
4o = "'pi ddEt/ Are o (p_T) deT—f—Et/ Are”? ( ) yrdT&d(e&p% e

_1d > e
= My + |9 S eat(l —e)p;© P / \ed yrdT
dt Dt t

1—¢
= My +(6+(1— 6)7@)1&/ (r=1) (i—) yrdr

¢
= Ay + (0 + (1 —¢)my) L1,

or

drys = ((0+ (1 —&)me) x1e — Aeye) di (13)

were we identify the actual rate of inflation m; over the period [t, ¢+ dt] with dp,/p,. We

can also renormalize \;, = e”'m, and get:
dzy, = (((5 + (1 —e)m) 1 — eptmtyt) dt
A similar procedure delivers:

dagy = ((6 — emy) way — € mymeyy,) dt (14)

)



Assuming that the price-change is stochastically independent across firms gives:

t
ptl—a _ / 56_6(15_7)]?;._6 dT,
— o
making the price level p; a predetermined variable at time ¢, its level being given by past

price quotations (Calvo’s insight). Differentiating with respect to time gives:

t
dptl_a = (6pi1t_€ — 5/ 56_5(t_T)pZ-17__€dT> d¢

—00

= 0 (p " —p ) dt

and . q
—d l—e _ 1— —6ﬁ'
dt t ( 6) pt dt
Then 5 5
dp, = 1. (piy“pf —p)dt = = T, ((H:f)lfE —-1). (15)

Differentiating the previous expression, we obtain the inflation dynamics:

1 _e 1 e € 1 Tot
dmy J (II7) dIly = 6 (II7) 5—1dtd( )

dt dt Tt
- | 1 Toy 1
= O (IT7 — | —d ——=—d
( t) E — 11‘1?,5 (dt $27t 1317t dt xl,t)
.1 1 Toys 1
= S —  =dzy, — 2 —d
( t) oy (dt Loy 1 a $1,t>
1 1 1 1
= S —=day, — ——d
( t) <3§'2’t dt T2 L1t dt th)
= §(Ip)' e (((5 —em) way — ePmymey)  ((0+ (1 —g)m) 21y — e”tmtyt))
¢ Tat Tt
1
= o (o (2 L) o). (16)
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2.4. The Government Problem

The government sets the nominal interest rate r, through open market operations accord-

ing to the Taylor rule (similar to Sims 2004, p.291):
th = (00 —f- 9171'15 — QQTt)dt + O-mdBm,t; (17)

The monetary authority buys or sells government bonds such as the nominal interest rate
follows (17) and the bond market clears (government bond supply now is endogenous).
This rule reflects both a response to inflation through the parameter 6, and a desire to

smooth interest rates over time through #,. The constant 8y = 0sr,, — 0,7, Summarizes



the attitude of the monetary authority towards either the average nominal interest rate or
the target of inflation (one target is isomorphic to the other, but both cannot be selected
simultaneously since we are dealing with a general equilibrium model). Moreover, the
term o, specifies the variance of shocks to monetary policy.

The coupon payments of the government perpetuities 77 = —r;a; are financed through
lump-sum taxes. Suppose transfers finance a given stream of government consumption

expressed in terms of its constant share of output, s,s,,, with a mean s, and a stochastic

component s, that follows another Ornstein-Uhlenbeck process?:

dlog sg; = —p,log syt + o4,d By, (18)

such that
gt — Ttb = Sg¢SgtYt — Ttb = 1.
2.5. Aggregation

First, we derive an expression for aggregate demand:

Yt = Ct + Gy

In other words, there is no possibility to transfer the output good intertemporally. With

this value, the demand for each intermediate good producer is

yir = (¢ + g) (Zﬁ) W (19)

Pt

Using the production function we may write:

Aliy = (¢t + 1) (Zﬁ) .

Dt

We can integrate on both sides:
' ' pir\
0 0o \Dt

Ay
Ct+ gt =Yt = U—lt
¢

v = /O 1 (%>_6 di (20)

ZWhile we could have sys,+ > 1, our calibration of s, and o, is such that this event will happen with
a negligibly small probability. Alternatively we could specify a stochastic process with support (0,1).

and get an expression:

where




is the aggregate loss of efficiency induced by price dispersion of the intermediate goods.

Similar to the price level, v; is a predetermined variable (Calvo’s insight):

t D —€
Vg =/ ) (£> dr.
—00 Dt

Differentiating with respect to time gives:

1 _ | pir\ ©
—dv, = 6(II*)°° §—de 007 (27 ) ¢
AT (%) +/ ar (m) ’

—00

t p —& t 1
= §(I}) =9 / Se0=T) (—) dr + / 56_5(t_7)pi_fadpfd7‘

—00 ygs —00
t

1
= 6(II}) " — ov, + / (56_5(t_7—)p;55p§_1&dptd7

= 0(II}) " + (em — O)vr. (21)

—00

For aggregate profits, we use the demand of intermediate producers in (19):

1 .
Fe = / (22 — mct) Yirdi
0 ygs
Y (pi AN
) ()
0 P g
1 D; 1—¢
= / (—Zt) di — mevy | ye
0 Dt

= (1 —mew)y:. (22)

2.6. The HJB Equation First-Order Conditions

Given our description of the problem, we define the household’s value function as:

(o) ll+19
V(Z,:Y,) = E LA —qpt dt
(ZYe) = | max 0/0 ‘ t{ogct w1+19}



s.t.

da; = ((ri4+a —m)ar — e +wily +Tp + F 1) dt (7)
(00 + 917Tt 927’t)dt + O’mdBmﬂg (17)

dv, = (6(II (e — 8)vy) dt (21)
dzyy = (( (e—=1) 7Tt)$1t — eptmtyt) dt (13)
dzyy = (( —emy) Xgy — €F mtytmct) dt (14)
dlogd; = —p,logdidt + 04dBgy (2)
dlog Ay = —p,log Aidt + 0,dB,; (10)
dlogsg; = —p,logsydt +o,dB,; (18),

in which we define the vector of relevant state variables Z; = (a¢, ry, vt, T14, Toy, dt, Aty Sgt)
and Yy = (y, mey, wy, me, 1 ,my, Ty, F ) = Y(Zy) to be determined in equilibrium, so far
taken as parametric by the household. By choosing the control (¢, ;) € Ri at time ¢, the
HJB equation reads:

[+
oV (Zy;Yy) = {ge% dy {log cr — @/11:_ 19}
+ ((re + ap — mo)ay — e +wily + Ty + F1) Vs
+(0o + 017y — Oo1) V. + %0’72%‘/;7“
+ (0 (1) + (em = 0)uy) Vi,
+ ((5 —(e=Dme)zrs — €ptmtyt) Vi
+ ((6 — ETy) Ty — e"tmtytmct) Vo
—(pglogdy — $03)dVy + 2o3d; Vg
—(pglog Ay — $02) AV + 502 A7Vau
—(pylog sgr — 502)5g4Vs + 3 Vi (23)

ggt 88

A neat result about the formulation of our problem in continuous time is that the HJB
equation is, in effect, a deterministic differential equation.

The first-order conditions with respect to ¢; and [; for any interior solution are:

dy
&y 24
iy 21
dl] = Vow, (25)
or, eliminating the costate variable (for i # 0):
Wf Ct = Wy

10



which is the standard static optimality condition between labor and consumption.
The first-order conditions (24) and (25) make the optimal controls functions of the
state variables, ¢; = ¢(Z; Yy), l; = 1(Zy; Yy). Thus, the concentrated HJB equation reads:

Zy; Y)Y
pV(Zt, Yt) = dt log C(Zt; Yt) — dﬂb%

+((re + g — m)ag — c(Zy; Yy) + wil (Ze; Yo) + Ty + F4) 'V,

+(0p + 0171y — Oory) V. + %aanM

+ (0 (1) ™ + (em — 0)vy) Vs,

+ ((5 — (e = Dm)a1e — eptmtyt) Vi,

+ ((5 — EMy) Ty — eptmtytmct) Vio

—(pqlog d; — %U?z)dtvd + %U?ld?vdd

—(palog Ay — 202) AV + 202 A7 Vau

(o 080 — 20)s02Ve t 052 Vi (26)

Using the envelope theorem, we obtain the costate variable V, as:

Ve = (mt+ar—m)Vo+ ((ri+ap —mp)ay — e +wlly + Ty + F o) Vi
+(00 + 017 — Oo1)Veg + 202 Virg
+ (6 (I1) ™ + (emy — 6)vy) Vig
+ ((5 —(e—=1)m)x1y — eptmtyt) Vira
+ ((6 — eme) 2oy — €”"myyemcy) Viya
—(pglogdy — 503)diVaa + 30 3d7 Vada
—(py log Ay — %oz)AtVAa + %U?LA?VAAQ
—(pg log s,+ — 10'2)89?75‘/8(1 + %ajszi\/;sa. (27)

2%g

An alternative formulation in terms of differentials is:

(p—ri—ap +m) Vodt = Vipeday + (dry — 0 dBpt) Vi + %Uﬁqum + Viaduy
+Vrad1 s + Vigadday + (ddy — 04didBay) Via + $05d7 Vagadt
+ (dA; — 04 A dBay) Vaa + 502A Vanadt + (dsgy — 0450 Byy) Via + 30257 Visadt

or

(p —Ty— g+ 7rt) ‘/adt + JddtvdadBd,t + UaAthadBa,t + O—gsgﬂf‘/sang,t + Umrtv;“adBm,t
- ‘/aadat + V;"adrt + %O-Enr?‘/;ra + ‘/:uadvt + ‘/x1adxl,t + ‘/Jrgade,t
+Vaaddy + 5077 Vaadt + Vaad Ay + 502 A7Vaadt + Viadsg s + 50557 Viadt.

11



Observe that the costate variable in general evolves according to:

d‘/a = ‘/aadat + ‘/radrt + 10'2 ‘/rradt + V;;advt + ‘/zladxl t + szadQ;Qt
+Vaaddy + 505d; Vagadt + Vaad Ay + 302 A7Vanadt 4+ Vidsg + 30552 Vigadt
= (p—ri— oy +m)V,dt

_'_O'ddt‘/dadBd,t + UaAtVAadBa,t + O'QSg,t‘/sang,t + O-m‘/radBm,t’ (28)

Note that (28) determines the stochastic discount factor (SDF) consistent with equilibrium

dynamics of macro aggregates, which can be used to price any asset in the economy:

1 2‘/da 12 2VA(1 V;a V;"a
dlnV, = vadVa dtVth—2 oL A; Vth_ Vth__ mVth
Via Viaa Via Via
= (p—ri— oy +m)dt + 04d, ‘j ABys + 044, {/“ ABay + 04507, AByy + Om 7t dBon
1% V2 V2 V2
1 2 Vda 2 12" Aa 1 2.2 sa ra
—50 dt 72 —=dt — 505 A; 0E dt — 20450t 2 dt — = mV2 dt.
For s > t, we may write:
_p(s_t)‘/;z(Zs;Yt) _
V (Zta Yt)
— j; T+ @y — my,)du — 2 ) V2 O'dd2d 2 ts “/;‘;azAidu
exp -3 ft 9“0333 LJdu — 5 ft T“JQ du

+ ft Vda add dBg., + fs Vaa iy A,dB, ut f: Vs 2045, wdBg. + ft Yo deBm u
Hence, the implied SDF is (see Hansen and Scheinkmann, 2009):

My e Va2 V)

my Va(Zt; Yt) ’

and we can pin down my; = e "V, (Z; Yy).

Using the first-order condition (24) and (28), we obtain the implicit Euler equation:

d(é> :(p_/rt_at—'—ﬂ—t) (dt) dt
Ct Cy
dy

dy dy dy
—04di—cqd By — 0, Ai—cadBay — 048g1—cdByy — 0p—¢,d By,
c; 7 3 s

in which V,q = — (di/c?) ¢4, Vaa = — (d/?) ca, Via = — (d/c?) s, and Vg = — (di/c?) c,
are expressed in terms of derivatives with respect to the optimal consumption function.
This equation has a simple interpretation: the change in the marginal utility of consump-
tion depends on the rate of time preference minus the effective real interest rate and four

additional terms that control for the innovations to the four shocks to the economy.

12



Hence, by applying 1t0’s formula we obtain the Euler equation:

d —1 d d 1 d—l
d <2> — <_t> (p_rt_at+ﬂt)dt+g§_tcfldt+a2,42 cAdt—l—a soy——cadt
dt Ct Ct Ct
d-
—i—afnt—czdt + O'dCddBdﬂg + O'aAtdt_lCAdB%t + Ugsg,tdt_lcsng,t + Umdt_lcrdBm,t
Ct
or
Qd? 2 A2 2 Zt 2 2
dct = —(p—’[“t—Oét+7Tt)Ctdt+O'd—Cddt+0' CAdt+Ug dt+0 _C dt
Ct Ct C

+o4cqdidBay + 0, Acad B, + O'gSgthsdB%t + omcrdBy,
—cipglog didt + c,oqd By + %Ctozdt + o3dcqdt, (29)

where ¢ = ¢(Zy; Y;) denotes the household’s consumption function for a given Yj.

3. Equilibrium

The general equilibrium is given by the sequence {ct, ls, ar, mcy, T1t, o, F o, We, Tty Gey T,

7, I, v, e, dyy Ay, 5.4} ooy determined by the following equations:

e Euler equation, the first-order conditions of the household, and budget constraint:

Equation 1

2 d7 2 A7 250t 2 2 1 o
de; = —(p — 1t — ap + m)epdt + o5—LcAdt + o —cAdt +o,—=cdt + o, —c,dt
Ct Ct Ct

—cipglog didt + Ectaddt + addtcddt
+(oacady + ¢104)dBgt + 04 ArcadBay + 0454.:¢sdBy ¢ + 01 d By
Equation 2
Ve, = wy
Equation 3
difcy =V,
(redundant)
da; = ((re + o — mp)ay — ¢, +wily + Ty + F ) dt

13



e Profit maximization is given by:

Equation 4
= € i 1 %

Equation 5

oy = ((0 = (e = Dm)are — Vaye) dt
Equation 6

daey = ((0 — emy) oy — Vayemey) dt
Equation 7

Fi=(1—mcoo)y

Equation 8

Wt = Atht

e Government policy:

Equation 9
dry = (0 + 017 — Oary)dt + 0,,d Byt
Equation 10

gt = SgSg,tYt
(redundant)

T, = —rap — SgSg,tYt

e Inflation evolution and price dispersion:

Equation 11

Equation 12

14



e Market clearing on goods and labor markets:

Equation 13
Yy = ¢+ g (expenditure)

Equation 14

A
y, = —1, (production)
Ut

(redundant)

Yy = wly + F¢  (income)

e Stochastic processes follow:

Equation 15
dd, = — (plogd, — 305) didt + 04d,d By,

Equation 16
dAt = — (pa log At — %O’z) Atdt + O-aAtdBaﬂf

Equation 17
ngﬂf = — (pg log Sgt — %0-3) Sthdt =+ O-gsg,tng,t

Further, using the household’s budget constraint, we get in equilibrium:

da; = ((re+o —m)ar —cr +wly + Ty + Fo)dt
= ((a¢ —m)ay — ¢ — g0 + yo)dt

= (Oét — Wt)&tdt,

where for da, = 0 either ay = 7, and/or a; = 0 for all ¢. It illustrates that our fiscal rule

requires «; to offset the inflation rate (in what follows we use a; = 0 and oy = 0).

4. Analytical results

Since we are interested in the general equilibrium dynamics for the case where a; = 0,

we use a short-cut approach and directly solve (26) with general equilibrium values for

Y, = Y(Z;). We compute V(Z;;Y;) for a; = 0 at values for Y(Z;) which clear all markets.
Steady-state. Without shocks the economy moves towards its steady state. Observe that

non-stochastic steady-state values for the stochastic processes are Ay, = dgs = 54,55 = 1.

15



e Euler equation, the first-order conditions of the household, and budget constraint:

Equation 1
Tes = T'ss — P
Equation 2
Pl Cos = W
Equation 3
=V,
e Profit maximization is given by:
Equation 4
« € Toss
e —1xy
Equation 5
0= (60— (e = 1)Tss)%1,55 — Valss
Equation 6
0= (0 —em) w255 — Vayssmcss
Equation 7
Fss = (1 — mcssvss)Yss
Equation 8

Wss = Ass Mmcsg

e Government policy:

Equation 9
(This equation is an identity in the steady state.)
Equation 10

Gss = SglYss

e Inflation evolution and price dispersion:

Equation 11

Equation 12



e Market clearing on goods and labor markets (one condition is redundant):
Equation 13

Yss = Css + gss  (expenditure)
Equation 14

Yss = —— g (production)

SS

(redundant)

ySS = wsslss + FSS (income)
e Stochastic processes follow:

Equation 15

des =1

Equation 16
A =1

Equation 17
Sg.ss = 1

Given the level of steady-state inflation around which the model often is log-linearized

we obtain the following steady-state values. Using Equation 1, we obtain
Tss = Mss + P
Using Equation 11, we obtain the steady-state value II,
I, = (1 - (e = 1)(mas/0) T
Using Equations 5 and 6 we can solve for the steady-state value of the marginal cost:

0—em x
Mcss = (6 - 87]-88) (1 - Sg)x2755 OF  MCss = ) (5 18)571' .TZSS
- - ss L1,ss

which by inserting Equation 4 gives:

§ — ETgs -1
o em 5 .
d—(e—Dmgs €
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Hence, we obtain

T1es = 1/ (1= 5)(0 = (¢ = 1)7ss))

Using Equation 8, we obtain

Wss = MCss
Using Equation 12 gives the steady-state value of price dispersion

0 (%)~

Vss =
0 — EMgs

Using Equation 14, we obtain

Yss = lss/vss

Using Equation 13 and Equation 10 yields

Yss = CSS/<1 - 39)

Combining the last two equations gives

lss/vss = Css/(l - Sg)

Using Equation 2 we get

9
wZSSCss = Wss

hence we can collect terms to obtain

l ( Westss )
T \w( - sy)
Using Equation 7 and Equation 14 we get
Fss - (1 - mcssvss)lss/vss
Note that the TVC requires that lim; ., e ”EqV(Z;) = 0, in which Z} denotes the
optimal state variables in line with general equilibrium conditions.
5. Equilibrium dynamics and impulse response analysis

In this section, we obtain the reduced-form equilibrium dynamics. First, we consider the
non-linear system of stochastic differential equations which can be used to get impulse

response functions. Second, for comparison we also consider the linear approximation of
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equilibrium dynamics around the non-stochastic steady state.
Equilibrium dynamics. It is instructive illustrate the mechanics of the new Keynesian

model. We start with the combined first-order condition and market clearing:

wy = 7»“?0:: < VW = @Mtlw(l — 8¢Sg.t) At

o [ UgWy
t (1 — Sgsg,t)Atw
or by (25)
e = (1= 5y54) /v1) T57 Ay (mey o) 759 (30)
or

me; = YU (1 — sy544) vs

Our key result is that any (partial) equilibrium, i.e., any equilibrium for a given level of
marginal cost, mc;, the policy functions are available analytically. In the new Keynesian
model, however, the firm takes into account expected future marginal cost and current
marginal cost whenever it has an opportunity to adjust its price. As we show below, the
equilibrium value for marginal costs is an unknown function of the states, Y; = Y(Z;).
First, we insert the equilibrium SDF into the evolution of expectations. As it turns out,
in equilibrium the discounted expected future profits, z,; and costs z,; are independent

from the control variables. In equilibrium where markets clear the variables follow:

dr,; = ((Hf)l_%xl,t — eptmtyt) dt
= (((352,t/371,t)5/<5 - 1))1_6 0T1 — eptmtyt) de
= (((xzi/a:l,t)e/(s — 1))17E dx1y —di/(1— sgsgﬂg)) dt

and similarly:

dagy = ((5 (HI)H — 1) dx94/(e —1) — eptmtytmct) dt
= ((e ((wa/z1)e/ (2 — 1)) — 1) 6z9,/(c — 1) — e”'myyymey) dt
= (((:cgyt/a:u)s/(a — 1))1_5 dxose/(e — 1) — dxoy/(e — 1) — meydy/ (1 — sgsg,t)) dt

We are left with 5 non-linear differential equation, i.e., for the auxiliary variables x; 4,
Tay, price dispersion vy, the Taylor rule r;, and the Euler equation, which determines

marginal costs, mc, together with the 3 exogenous shock processes for sy, d;, A;.
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To summarize, denoting the shadow price V, = \; the equilibrium dynamics are:

Equation 1
A\t = (p — e + ) Nedt + 0gdiAadBay + 0, AiAadBat + 04551 A Byt + 07\ d By
Equation 5

drye = ((0 — (e = D)mp)w1y — di /(1 — 5454,4)) dt
Equation 6

daoy = ((0 —emy) 2oy — mepdy /(1 — s484¢)) dt
Equation 9

dry = (6 + 017 — Oary)dt + 0,,d By
Equation 12
dv, = (0(1 + (1 — €)/8) 75 + (em — 8)vy)dt

in which (1 + m¢(1 — 5)/5)1%6 =¢/(e — 1)(x24/214+) determines the inflation rate and

v

Ao = (1= s54.0) /0) 757 (mey /)79 dy Ay, (31)
< Mmeg = w(At(At/dt))’“”) (ve/(1 = Sgsg,t))ﬁ

pins down marginal costs. Given a solution to the system of dynamic equations augmented
by the stochastic processes (Equations 15, 16, and 17), the general equilibrium policy
functions (as a function of relevant state variables) can be obtained from (30).

In fact, we are looking for a yet unknown function mec(Z;; Y;) which simultaneously
solves all equilibrium conditions and the maximized Bellman equation. Observe that the
costate variable (31) depends on the stochastic shocks and price dispersion. This is why
our approach to solve for the general equilibrium values has been to augment the vector
of state variables of the household’s value function by the law of motions for expectations
x14 and a4, price dispersion v;. In Section 6, we use the static condition (31) recursively
to pin down marginal costs in general equilibrium.? In particular, this approach solves for
the household’s HJB equation, given aggregate equilibrium dynamics.

Impulse response. To compute impulse response functions, we initialize a shock to the
system and solve the resulting system of ODEs using the Relaxation algorithm (Trimborn,
Koch, and Steger, 2008). For stochastic simulations, we may add stochastic processes and

make use of the policy functions obtained before (cf. Posch and Trimborn, 2011).4

3The traditional approach is to (log-)linearize the equilibrium conditions and solve the system of linear
dynamic equations. In contrast, our non-linear approach uses the recursive competitive solution and the
implied general equilibrium value function, which in turn pins down the unknown marginal costs.

4We may use the Relaxation algorithm to solve the dynamic equilibrium (non-linear) system. As long
as the derivatives of the unknown policy function do not appear in the deterministic system, we may
obtain the solution without any recursion. Otherwise, we may use the Waveform Relaxation algorithm.
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Table 1: Parameterization

9 1 Frisch labor supply elasticity

p 0.01 subjective rate of time preference, p = —41og0.9975

() 1 preference for leisure

) 0.65 Calvo parameter for probability of firms receiving signal, § = —41log 0.85
€ 25 elasticity of substitution intermediate goods

sq  0.05 share of government consumption

pq 0.4214 autoregressive component preference shock, p; = —41log0.9

p, 0.4214 autoregressive component technology shock, p, = —410g0.9

py  0.4214 autoregressive component government shock, p, = —410g 0.9

oq 0.1053 variance preference shock, 023/(2p,) = 0.0252/(1 — 0.9?)
o, 0.1053 variance technology shock, o2/(2p,) = 0.0252/(1 — 0.9?)
o, 0.1053 variance government shock, 03/(2pg) =0.025%/(1 — 0.9?)
om 0.025  variance monetary policy shock

0, 2 inflation response Taylor rule

>, 0.5 interest rate response Taylor rule

mss  0.005  steady-state inflation

5.1. The equilibrium dynamics at the zero lower bound

This section reports the impulse responses based on the non-linear equilibrium dynamics
for the parameterization summarized in Table 1. In particular, we are interested in the
effect of the zero lower bound (ZLB) for various shocks. For this objective, we initialize
ro = 0.5% slightly higher than the U.S. Federal Funds Interest rate, currently at 0.2%,
and then analyze shocks that drive the interest rate towards the ZLB.5

5.1.1. A monetary policy shock

Figures 1 and 2 illustrate the effect of a monetary policy shock. On impact, the negative
impulse to the interest rate drives the (shadow) interest rate below the ZLB. As the
constraint is binding, on impact the positive response of consumption and hours is not as
pronounced, the equilibrium marginal cost does not increase as much, while the inflation
response is higher. The adjustment towards the equilibrium marginal costs generally is
more sluggish. After roughly four quarters, the ZLB is no longer binding and variables

move towards their equilibrium values.

5.1.2. A preference shock

Figures 3 and 4 illustrate the effect of a preference shock. Though the ZLB by construction
does not bind on impact, the fact that exactly this is anticipated to happen leads to a
larger effect on hours and consumption on impact. In what follows, the negative impulse to

preferences drives the (shadow) interest rate below the ZLB after roughly one quarter. As

>Our parameterization corresponds to the discrete-time model (cf. Section A.3) and roughly coincides
with plausible values for the U.S. economy with steady state interest rate of 1.5%.

21



now the constraint is binding, the response of consumption and hours slightly overshoots
after roughly ten quarters. The inflation response on impact is higher, but returns faster to
its equilibrium value compared to a situation where we allow for negative interest rates.
The non-linear effect of the ZLB on the dynamics for price dispersion in this economy
is clearly visible in Figure 3. The adjustment towards the equilibrium marginal costs
generally is more sluggish. Finally, after roughly 3 years (12 quarters), the ZLB does no

longer bind and the variables gradually move towards their equilibrium values.

5.1.3. A productivity shock

Figures 5 and 6 illustrate the effect of a productivity shock. Except for the response for
consumption, the effects of the ZLB on the economic aggregates of a positive productivity
shock are roughly comparable to those of a negative preference shock (see above). As we
show in Figure 6, optimal consumption increases on impact but not as much as without the
presence of the ZLB (while the negative effect on hours is more pronounced). Moreover,

the economy escapes the ZLB slightly earlier after roughly 10 quarters.

5.1.4. A government spending shock

Figures 7 and 8 illustrate the effect of a government spending shock in the form of a more
restrictive fiscal policy. We do not find any effects of the ZLB on economic dynamics since
the constraint is never binding (and by construction does not bind in on impact). This is
remarkable since restrictive fiscal policy typically lowers the interest rate. However, since
the dynamics of the interest dynamics to return to its steady-state are much stronger such
that households and firms anticipate that the ZLB does not bind at any point. This result

is robust to higher values for the share of government consumption.

6. Numerical Solution in the policy function space

In what follows, we solve the concentrated HJB equation (26) using a collocation method
based on the Matlab CompEcon toolbox (Miranda and Fackler 2002). Define the state

space U, C R"™ and the control region U, C R™. We may write the control problem as
oV (Z;Yy) = f(Ze,X4) + 9(Ze, X4) " Vz + %tf (U(Zt, Xy)o(Zy, Xt)TVZZ) (32)

in which Z, € U, denotes the n-vector of states, X; € U, denotes the m-vector of controls,
and Y; = Y(Z;) is determined in general equilibrium as a function of the state variables.
We define the reward function f: U, x U, — R, the drift function g : U, x U, — R", the

diffusion function o : U, x U, — R™*_V, is an n-vector and Vzz is a n x n matrix, and
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tr(A) denotes the trace of the square matrix A. In general, the state equation follows
dZt = g(Zt7 Xt; Yt) dt —|— U(Zt, Xt) dBt

where B; is an k-vector of k independent standard Brownian motions. The instantaneous
covariance of Z; is o(Zs, X)o(Zs, X;)", which may be less than full rank.
First, the first-order conditions (24) and (25) yield optimal controls as a function of

the states and costate variables:

(L, Vi (Zy; Ye); Yy)
Z(Zt, Vz(Zt; Yt)Q Yt)

(Va(Zy;Yy)) ' dy

Xy = X(Zy, Va(Z; Y); Yo) = (Va(Ze: Yo)we/ (di))

Second, we define the reward function as a function of the states and the optimal controls:

1+9

f(ZtaXt) = d;log ¢ _dt¢1t+q9'

Third, we define the drift function of the state transition equations:

(ry — mp)ay — ¢+ wily + Ty + Fy
0o + 01 — Oy
6 (IL) ™" + (emy — O) vy
(0 — (e = D)mp)zrp — di /(1 — 5454.4)
(0 —emy) xop — merde /(1 — $4544)
—(pqlogd; — %Ugmt
—(pylog Ay — 502) A
Ly2)

—(pglog syt — 503)544

g(Zt7 Xt) =

Fourth, we define the diffusion function of the state transition equations:

00 000 0O 0 0
0 6m 000 0O 0 0
00 000 0O 0 0

Xy |0 0 000 0 0 0
00 000 0O 0 0
000 000 ogdy, 0 0
00 000 0 0,4 0
(000 000 0 0 oy,

As an initial guess we may use the solution of the linear-quadratic problem.® Since

6Note that for an initial guess we may use the policy function as a time-invariant function of the state
variables (and auxiliary variables, which in fact are functions of the state variables) obtained from either
the non-linear equilibrium dynamics, a (log)linear approximation, or the linear-quadratic problem.
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Table 2: Summary of the solution algorithm in the policy function space

Step 1  (Initialization) Provide an initial guess for the coefficients for a given set
of collocation nodes and basis functions.

Step 2 (Solution) Compute the optimal value of the controls for the set of nodal
values for the state and costate variables.

Step 3 (Update) Update the value function coefficients.

Step 4  (Iteration) Repeat Steps 2 and 3 until convergence.

the functional form of the solution is unknown, our basic strategy for solving the HJB
equation is to approximate V' (Z; Yy) &~ ¢(Z4; Y4 )v, in which v is an n-vector of coefficients
and ¢ is the n X n basis matrix. Starting from the concentrated HJB equation (32), our
initial guess for the coefficients from an approximation of the value function and/or control

variables for given set of collocation nodes and basis functions ¢(Z;; Y;) reads:
pO(Z; Yo )v = f(Z,X4) + g(Z, Xo) T by (Z; Yo v + str (0(Ze, Xy) o (Zy, Xt)T¢ZZU)
or

v = (P¢<Zt;Yt) - Q(Zt,xt)T¢Z(Zt; Y;) — %tr (U(ZuXt)U(Zt,Xt)T¢Zz>)71 f(Z, Xy).

Using the coefficients we compute the optimal value of the controls for the set of nodal
values for the states, which in turn is used to update the value function coefficients. We
iterate computing controls and updating the coefficients until convergence (cf. Table 2).
It illustrates the recursive nature of the problem: households take as given aggregate
variables Y, which, however, depend on households’ decisions. We start the recursion
using Y,EO) = Y,,, then update the vector of aggregate variables Yf) = Y(Z¢, X(Z;) V)
for ¢+ = 1, ... until convergence. If necessary, we solve this recursive problem by adding

a state variable for government liabilities.”

Finally, we impose general equilibrium by
considering optimal policy functions ¢(Zy; Y(Zy)), (Z; Y(Zy)).

Impulse response. Given our solution V(Z; Y(Z:)) =~ ¢(Zs; Y(Zi)v, we may simulate
the optimal values of the controls for a set of nodal values for the state variables. We may
use the Matlab CompEcon toolbox to conduct a Monte Carlo simulation of a (controlled)
multidimensional [to processes. In particular, we obtain impulse response functions by

setting o(Z;, X;) = 0 and initializing the impulse for one of the states.

"This is particularly important for cases where aggregate variables depend on government liabilities.
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7. Results

[to be completed]

8. Estimation

[to be completed]

9. Concluding Remarks

[to be completed]
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Figure 1: Impulse responses to a monetary policy shock
In this figure we show (from left to right, top to bottom) the simulated responses for an impulse to
the interest rate and its effect to the price dispersion, marginal cost, inflation, the preference shock, the
technology shock and the government expenditure shock based on the non-linear equilibrium dynamics.
While the blue solid line considers the zero lower bound, the red dashed line allows for negative values.
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Figure 2: Impulse responses to a monetary policy shock
In this figure we show (from left to right, top to bottom) the simulated responses for an impulse to the
interest rate and its effect on optimal consumption, the auxiliary variable for expected revenues, optimal
hours, and the auxiliary variable for expected cost based on the non-linear equilibrium dynamics. While
the blue solid line considers the zero lower bound, the red dashed line allows for negative values.
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Figure 3: Impulse responses to a preference shock

In this figure we show (from left to right, top to bottom) the simulated responses for an impulse to
preferences and its effect to the interest rate, price dispersion, marginal cost, inflation, the technology
shock and the government expenditure shock based on the non-linear equilibrium dynamics. While the
blue solid line considers the zero lower bound, the red dashed line allows for negative values.
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Figure 4: Impulse responses to a preference shock
In this figure we show (from left to right, top to bottom) the simulated responses for an impulse to
preferences and its effect on optimal consumption, the auxiliary variable for expected revenues, optimal
hours, and the auxiliary variable for expected cost based on the non-linear equilibrium dynamics. While
the blue solid line considers the zero lower bound, the red dashed line allows for negative values.
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Figure 5: Impulse responses to a productivity shock
In this figure we show (from left to right, top to bottom) the simulated responses for an impulse to
technology and its effect to the interest rate, price dispersion, marginal cost, inflation, the preference
shock and the government expenditure shock based on the non-linear equilibrium dynamics. While the
blue solid line considers the zero lower bound, the red dashed line allows for negative values.
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Figure 6: Impulse responses to a productivity shock

In this figure we show (from left to right, top to bottom) the simulated responses for an impulse to
technology and its effect on optimal consumption, the auxiliary variable for expected revenues, optimal
hours, and the auxiliary variable for expected cost based on the non-linear equilibrium dynamics. While
the blue solid line considers the zero lower bound, the red dashed line allows for negative values.
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Figure 7: Impulse responses to a government spending shock

In this figure we show (from left to right, top to bottom) the simulated responses for an impulse to
government expenditure and its effect to the interest rate, price dispersion, marginal cost, inflation, the
preference shock and the technology shock based on the non-linear equilibrium dynamics. While the blue
solid line considers the zero lower bound, the red dashed line allows for negative values.
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Figure 8: Impulse responses to a government spending shock

In this figure we show (from left to right, top to bottom) the simulated responses for an impulse to gov-
ernment expenditure and its effect on optimal consumption, the auxiliary variable for expected revenues,
optimal hours, and the auxiliary variable for expected cost based on the non-linear equilibrium dynamics.
While the blue solid line considers the zero lower bound, the red dashed line allows for negative values.
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A. Appendix

A.1. Linear-Quadratic Control

Typically, linear and quadratic approximants of g and f are constructed by forming the

first- and second-order Taylor expansion around the steady-state (Z*, X*),

FZ,X) = [+ 3 (T =2+ f (X = X) + 52— 2°) f32(2, - 27)
+(Zy — Z7)" frx (X — X) + %(Xt — X" frx (X — X,
9(Z,Xy) = g"+ g3(Z — Z7) + gx(X; — X7),

where f*, 9%, 7, [, 95, 9% f72, f7x, and fgx are the values and partial derivatives of f and
g evaluated at the steady-state. Thus, the approximate solution to the general problem
is supposed to capture the local dynamics around that stationary value.

Collecting terms, we may identify the coefficient of the linear-quadratic problem as

fo = =T~ [TX 3L [l + T fXT 4 X fi X
fz fz = f22Z" — f7xX7,
fX = fsz_fikxTZ* — fxxX5,

fiz = fim Fix=fixo frx = fix

Jo g — g " — 9xX*, Gz =9y, Jx = g%

where
f(ZtaXt) = fo + ]FZTZt + fgxt + %ZtTfZZZt + ZtT]?ZXXt + %X:]ZXXXM (A.1)

and a linear state transition function
G(Z4,Xt) = Go + Gzl + GxX4, (A.2)

Z, is the n x 1 state vector, X, is the m x 1 control vector, and the parameters are fo,
a constant; fz, an X 1 vector; fX, am X 1 vector; fZZ, an n X n matrix, fzx, an n X m
matrix; fXX, an m X m matrix; gog, an n X 1 vector; gz, an n X n matrix; and gx, an n X m
matrix.

As from (23), the HJB equation for the (non-stochastic) problem reads
PV (Z) = max { F(Z0, %) + Va(Z) (20, %) } (A.3)
Observe that we have m first-order conditions,

fx + faxZs + fxxXe + Gg Va(Zy) = 0

34



which imply
Xe = —fax | fx + JaxZe + 33 Va(Z) |, (A4)

that is, the controls are linear in the state and the costate variables. We proceed as follows.
The solution of the linear-quadratic problem is the value function which satisfies both the
maximized HJB equation and the first-order condition. We may guess a value function
and derive conditions under which the guess indeed is the solution to our problem.

An educated guess for the value function is

in which the parameters Cy, a constant; Az a n x 1 vector; and Azz, a n X n matrix need
to be determined. This implies that the costate variable, a n x 1 vector (and thus the

controls) is linear in the states
VoZy) = Ng + Az (A.6)
Inserting everything into the maximized HJB equation gives

pCo + pAy Zy + p%Z:AZZZt = fot+ B2+ KX+ %Z:fZZZt + Z:fZXXt + %XI]EXXXt
+A7 (G0 + 922 + §xXe] + Z¢ Mgz [Go + G2l + GxX4)

where the vector components are:
X, = —figt e+ Az + | fl+ 9 Aea| 2]
X/ faxXe = [fs—gr +A—ZF§X] fid [fx +§;AZ] +2 [f{{ +A—ZF§X} fid [ng +§;§FAZZ] Ly
. T . [~
+Z; [fgxt + §;£AZZ} fxx [fZTX + ggAZZ} Ly
Finally equating terms with equal powers determines our coefficients recursively
pCo = fo— Ffah [Fa+ aihe] + [+ ALax] ik [F+ 350
+Ag [go — Gxfot [JEX + §>:grAZH ;
- - T N _ T
phy = [ — [fx +G% AZ] Fax Fax + D3G9z + Go Mzz — [fx + Jx AZ] Frxx Azz,
- N _ T . r-
pihzz = 1fzz — faxfex [szx + Q;gr/\zz] + 3 [fgx + §;£AZZ} Fxx [fgx + ggAZZ}

+1A7207 + 235 Agz — Azzbx f [f;x + fJ;AZZ} :
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Rewriting the last condition gives

0 = fuz+Moz(fz — 3oLn) + (2 — 3pLn) "Azz
- [fzxf;&]ggx + fox fanGa Az + Mzzdx s fax + Azzgxf;&g;gr/\zz] ,

where I, is the identity matrix, which gives Azz and thus recursively, Az and Cy as a

solution of an algebraic Ricatti equation. The vector of coefficients Az is obtained from

F oo F-1=T - 1T T T[T FT i1 [T AT =T T
Az = [P]In + foxfix9x + Azzdx fex Ix — gZ] [fz — Ix fxx [fzx + 9x AZZ] + 90 AZZ}
This closes the proof that the guess indeed is the solution.

A.2. Linear approximations

In order to analyze local dynamics, the traditional approach is to approximate the dynamic
equilibrium system around steady-state values. We define we &; = (x; — x45) /255, Where

x5 is the steady-state value for the variable x;. Thus, we can write z; = (1 4+ ;) xs.

e Euler equation, the first-order conditions of the household, and budget constraint:

Equation 1
Et(dj\t) = (—((5 - (8 - 1)71'83))\352%1,t + (5 - (8 - 1)71-33)/\535%2,15 - 7ﬁss)\ssf‘if) dt

Equation 2
Oy + ¢ = iy
Equation 3
di— =\
(redundant)
da; =0
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e Profit maximization is given by:

Equation 4
I} = dg4 — 14
Equation 5
déy, = (5(5 (e = D)) Trssiirg — (€ — 1)(0 — (6 — 1)y )@1psibns
~Asstos (e + 1) )

Equation 6
Aoy = (200 = (& = D)Te)zasig + (1= £)(0 = £7y5) = M) 72,0520
_Assyssmcss(j\t + U+ mct)) dt
Equation 7
(1 — MCssss) F t = —MCssVss(micy + 1) + (1 — mcssvss )
Equation 8

wt = At + TfLCt
e Government policy:

Equation 9
dry = (=01(0 — (6 = V)mss)T1s + 01(0 — (6 — 1)7ss)Toy — Oarsstt) dt + 0., d Byt
Equation 10
Gt = Sg4 +
(redundant)

~

TssT;f - _Tssass<ft + &t) - Sgyss(gg,t + gt)

e Inflation evolution and price dispersion:

Equation 11

I, =0 (H:s)l_g f[;f, for I, =1+m
Equation 12
do, = (aﬂssvssﬂr + (emss — 5)vss@t) dt

37



e Market clearing on goods and labor markets:

Equation 13
Yss(Ur — Gi) = css(é — §¢)  (expenditure)
Equation 14
g = A, + 1, — 0, (production)
(redundant)

yss@t = wsslss(wt + lAt) + Fsgﬁt (income)

e Stochastic processes follow:

Equation 15
dd; = — (pg — 202) dydt + 04d;dBy,
Equation 16
dA, = —(p, — %ai)/ltdt + O'aAtdBmt
Equation 17

dsg = — (p, — %a?]) g4t + 0,5,,dBy

Recall that from (31) we obtain the linearized static condition

ey = —(1+0) (A + Ay — dy) + 00, + 9,/ (1 — 54)344
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Hence, we may summarize the local equilibrium dynamics around steady-state values as:

daq

~

dioy

)

doy

dry

d\;

dd,
dA,

dsg

in which we define percentage deviations &; = (x; —

(1260 = (e = Do)l ssins
+[=(e=1)(0 = (6 = D)Tss)@1,55] T2y
/(1= sy)lds = [sy/(1 = 5,)%)3)dt
([ = (e = Vmas)wsss] i

+(1—e)(0 —emss) -

—[0/(1 = sg)Jor + [(1 +9)/(1
H(1+ 0 — meg) /(1 — sg)]dy —

577—53] I2,ssj:2,t
Sg)](j\t + Ay)
[0+ mcas)sg/ (1= s5)?5,0 )t

([_gﬂ-ssvss]il,t + [Eﬂssvss]jlt + [gﬂ-ss - 5]U881A)t> dt
([—91((5 — (E

_ [eﬂssm) dt + 0 dBon

([_(5 - (5 - 1)7-(55))\55]1'1,15 + [(5 - (5 - 1)”55))\53]5%2,t + [_)\ss]rssft> dt

— D)mge)]@1e + [01(0 — (6 — V)7rss) | Tos

O\ R o\ R

+04 d T1,5sT1t + d T2 552t + ... dBd7t
a.rlﬂf ss ax2,t ss
O\ . O\ .

+0, 4 T1,55T1t + A T2,5sT2 ¢t 4+ ... dBa’t
axl’t ss al‘2’t s
O\ O

4o T1esXT14 + To ¢slos + ... | dB

9 <(9x17t . 1,551t s .. 2,502, ) .t

O\, ) O\, R

+Um xl,ssxl,trss -+ xQ’sst’tT’SS =+ ... dBm,t
01|, 0xay |,

_(pd % z)dtdt + UddtdBdt

_(pa % 2)Atdt + UaAtdBat

— (pg — 509) Sg4dt + 0454,dBy 4

xss)/xss-g

In order to analyze local dynamics around the non-stochastic steady state, we need to

study the eigenvalues of the Jacobian matrix evaluated at the steady state,

8Note that we used partial derivatives

om0 o' - -
Oriy l—e Ory =0 (1) Jw1s = —(0 = (e = D7) /71,

oy 5 o'
= = (0 — (¢ — D)mss

81‘2)75 1—¢ 8$27t ( (E )71— )/$2’t
OIT} OIl;

= —H* _—
t /th? axZ ‘

= H*/Z‘g t
a.’L‘Lt ¢ ’
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41
Q42
Q44
Q51
52
Q54
Q66
Q77

agsg

and the vector of shocks dB; = [dB,, 4, dBgy, dBq, dBy] "

ayp aip 0O
G21 Q22 (23
31 az2 Ass
ag1 asze 0O
as; asy 0
0
0
0

0
0
0

Q44

Q54

0

A25

o O O o o O

(0 — (e — 1)Tgs) @1 55
_(6 - 1)(5 - (5 - 1)77-88):171,85

—1/(1 = s4)

s, /(1 - 5,)?

(0 — (e — 1)Tgs)Tass

Q16
Q26
0
0
0

Qg6

0

0 ag
Qo7 Q28
0 O
0 0
0 0
0 0

arr 0
0 ass

(1 —¢e)(6 — emgs) — €Mgs)Ta 55

—0/(1 = s4)

(1+9)/(1 = s4)

(149 —meg) /(1 —sg)

(L+9)/(1 = sg)
—(0 +megs)sy /(1 — 39)2

—EMssVss
ETs5Vss

(57‘-35 -

0)Vss

—01(6 — (e — D)7rys)

01(6 — (e — 1)mss)

_‘92rss

—(0 — (g — 1)7ss) Ass

(6 - (5 - 1)7Tss))‘ss

AssT'ss
—(pa — %U?z)
~(pa — 302)
_(pg o %UZ)

40

dt+

ba1

bs1
0
0
0

0 0
0 0
0 O
0 0
bsy bs3
bea O
0 br3
0 O

o o O

0

b4
0
0

bs4

dB;



A.3. Calibration of model parameters

Suppose that we want to parameterize the Ornstein-Uhlenbeck process and the first-order

autoregressive process:
det = —pxll?tdt + O'det and jt = ﬁzjt + 6:551?7 Ty = fi'g. (A?)

B is a standard Brownian motion and £, ~ N (0, 1). Observe that the solutions are:
t t
Ty = xoe—pzt + e—pzt/ e’>*dB, and I = ﬁtxivo + %536 Zﬁm_lgi
0 i=1

Let us calibrate p,, given a parametric value for p, at the quarterly frequency, such that
the expected value E(z,) = E(Z4), and the variance Var(xz,) = Var(Z4) coincide. It is

straightforward to show that E(z;) = e =z and E(Z4) = piao. Hence, we obtain p,:

el =0y = p,=—4log(p,)

[to isometry:

1
Var(z,) = o2e 2= / et dt =
0

and

i=1
Equating terms implies:
_9 4
2 _ Pz —(i—1)2
U$_21_672pmsz ’

i=1
As an example, p, = 0.9 and 7, = 0.05 implies p, ~ 0.42 and o, ~ 0.11. Both processes

converge to the same limiting distribution, Var(z) = 02/(2p,) = Var(z) = 62/(1 — p2).
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